000890364 001__ 890364
000890364 005__ 20240610120129.0
000890364 0247_ $$2doi$$a10.1103/PhysRevE.103.012120
000890364 0247_ $$2ISSN$$a1063-651X
000890364 0247_ $$2ISSN$$a1095-3787
000890364 0247_ $$2ISSN$$a1538-4519
000890364 0247_ $$2ISSN$$a1539-3755
000890364 0247_ $$2ISSN$$a1550-2376
000890364 0247_ $$2ISSN$$a2470-0045
000890364 0247_ $$2ISSN$$a2470-0053
000890364 0247_ $$2ISSN$$a2470-0061
000890364 0247_ $$2Handle$$a2128/27100
000890364 0247_ $$2WOS$$aWOS:000608619900005
000890364 0247_ $$2altmetric$$aaltmetric:88021445
000890364 037__ $$aFZJ-2021-00909
000890364 082__ $$a530
000890364 1001_ $$0P:(DE-HGF)0$$aBurkhardt, T. W.$$b0
000890364 245__ $$aTwo-dimensional critical systems with mixed boundary conditions: Exact Ising results from conformal invariance and boundary-operator expansions
000890364 260__ $$aWoodbury, NY$$bInst.$$c2021
000890364 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2021-01-19
000890364 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2021-01-01
000890364 3367_ $$2DRIVER$$aarticle
000890364 3367_ $$2DataCite$$aOutput Types/Journal article
000890364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612195539_4542
000890364 3367_ $$2BibTeX$$aARTICLE
000890364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890364 3367_ $$00$$2EndNote$$aJournal Article
000890364 520__ $$aWith conformal-invariance methods, Burkhardt, Guim, and Xue studied the critical Ising model, defined on the upper half plane y>0 with different boundary conditions a and b on the negative and positive x axes. For ab=−+ and f+, they determined the one- and two-point averages of the spin σ and energy ε. Here +,−, and f stand for spin-up, spin-down, and free-spin boundaries, respectively. The case +−+−+⋯, where the boundary condition switches between + and − at arbitrary points, ζ1,ζ2,⋯ on the x axis was also analyzed. In the first half of this paper a similar study is carried out for the alternating boundary condition +f+f+⋯ and the case −f+ of three different boundary conditions. Exact results for the one- and two-point averages of σ,ε, and the stress tensor T are derived with conformal-invariance methods. From the results for ⟨T⟩, the critical Casimir interaction with the boundary of a wedge-shaped inclusion is derived for mixed boundary conditions. In the second half of the paper, arbitrary two-dimensional critical systems with mixed boundary conditions are analyzed with boundary-operator expansions. Two distinct types of expansions—away from switching points of the boundary condition and at switching points—are considered. Using the expansions, we express the asymptotic behavior of two-point averages near boundaries in terms of one-point averages. We also consider the strip geometry with mixed boundary conditions and derive the distant-wall corrections to one-point averages near one edge due to the other edge. Finally we confirm the consistency of the predictions obtained with conformal-invariance methods and with boundary-operator expansions, in the the first and second halves of the paper.
000890364 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890364 542__ $$2Crossref$$i2021-01-19$$uhttps://link.aps.org/licenses/aps-default-license
000890364 588__ $$aDataset connected to CrossRef
000890364 7001_ $$0P:(DE-Juel1)130628$$aEisenriegler, E.$$b1$$eCorresponding author
000890364 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.103.012120$$bAmerican Physical Society (APS)$$d2021-01-19$$n1$$p012120$$tPhysical Review E$$v103$$x2470-0045$$y2021
000890364 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.103.012120$$gVol. 103, no. 1, p. 012120$$n1$$p012120$$tPhysical review / E$$v103$$x2470-0045$$y2021
000890364 8564_ $$uhttps://juser.fz-juelich.de/record/890364/files/EV11863PUBLISHED.pdf$$yOpenAccess
000890364 909CO $$ooai:juser.fz-juelich.de:890364$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130628$$aForschungszentrum Jülich$$b1$$kFZJ
000890364 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000890364 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890364 9141_ $$y2021
000890364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000890364 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000890364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2018$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890364 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000890364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000890364 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000890364 9801_ $$aFullTexts
000890364 980__ $$ajournal
000890364 980__ $$aVDB
000890364 980__ $$aUNRESTRICTED
000890364 980__ $$aI:(DE-Juel1)IBI-5-20200312
000890364 981__ $$aI:(DE-Juel1)IAS-2-20090406
000890364 999C5 $$1M. E. Fisher$$2Crossref$$oM. E. Fisher 1978$$y1978
000890364 999C5 $$1H. W. Diehl$$2Crossref$$oH. W. Diehl Phase Transitions and Critical Phenomena 1986$$tPhase Transitions and Critical Phenomena$$y1986
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217979297001751
000890364 999C5 $$1M. Krech$$2Crossref$$9-- missing cx lookup --$$a10.1142/2434$$y1994
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2010/11/P11003
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.88.052110
000890364 999C5 $$1J. L. Cardy$$2Crossref$$oJ. L. Cardy Phase Transitions and Critical Phenomena 1987$$tPhase Transitions and Critical Phenomena$$y1987
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90241-4
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.66.895
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(91)90370-D
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.36.2080
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.14306
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90052-X
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(86)90596-1
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(89)90521-X
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.1443
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(91)90828-E
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.619
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.2051.2
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.14377
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(93)90005-A
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(95)00476-9
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.10009
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.94.032130
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/ab7658
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.3189
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.2867
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.13717
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/104/21001
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1768514
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.3.3918
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/17/18/005
000890364 999C5 $$1I. S. Gradshteyn$$2Crossref$$oI. S. Gradshteyn Table of Integrals, Series, and Products 1965$$tTable of Integrals, Series, and Products$$y1965
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.27.2937
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.3894
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.1595
000890364 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.4911