000890365 001__ 890365
000890365 005__ 20240708133223.0
000890365 0247_ $$2doi$$a10.1016/j.corsci.2018.11.022
000890365 0247_ $$2ISSN$$a0010-938X
000890365 0247_ $$2ISSN$$a1879-0496
000890365 0247_ $$2Handle$$a2128/27105
000890365 0247_ $$2WOS$$aWOS:000456902100018
000890365 037__ $$aFZJ-2021-00910
000890365 082__ $$a670
000890365 1001_ $$0P:(DE-Juel1)180592$$aTan, Xiaoyue$$b0$$ufzj
000890365 245__ $$aEvaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys
000890365 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000890365 3367_ $$2DRIVER$$aarticle
000890365 3367_ $$2DataCite$$aOutput Types/Journal article
000890365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612281135_24982
000890365 3367_ $$2BibTeX$$aARTICLE
000890365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890365 3367_ $$00$$2EndNote$$aJournal Article
000890365 520__ $$aW-Cr-Zr systems with different compositions were oxidized in a mixed gas (Ar + 20 vol.% O2) atmosphere at 1000 °C. The power law which was used to describe the oxidation behaviour, indicates that W-11.2wt.%Cr-1.7wt.%Zr has an excellent oxidation behaviour. As analysed from the ten-hour exposure, W-Cr-Zr thin film oxidation shows a self-passivating stage followed by a linear oxidation stage. Furthermore, a study on the addition of zirconium indicates that zirconia particles act as diffusion barriers for the chromium cation diffusion and another function as the nucleation sites for the formation of the initial oxide scale.
000890365 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000890365 588__ $$aDataset connected to CrossRef
000890365 7001_ $$0P:(DE-Juel1)166427$$aKlein, F.$$b1$$eCorresponding author
000890365 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b2
000890365 7001_ $$0P:(DE-Juel1)161367$$aWegener, T.$$b3
000890365 7001_ $$aSchmitz, J.$$b4
000890365 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b5
000890365 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b6
000890365 7001_ $$aBreuer, U.$$b7
000890365 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b8
000890365 7001_ $$0P:(DE-Juel1)143986$$aLi, P.$$b9
000890365 7001_ $$0P:(DE-HGF)0$$aLuo, L. M.$$b10
000890365 7001_ $$0P:(DE-HGF)0$$aWu, Y. C.$$b11
000890365 773__ $$0PERI:(DE-600)1500558-6$$a10.1016/j.corsci.2018.11.022$$gVol. 147, p. 201 - 211$$p201 - 211$$tCorrosion science$$v147$$x0010-938X$$y2019
000890365 8564_ $$uhttps://juser.fz-juelich.de/record/890365/files/Evaluation%20of%20the%20high%20temperature.pdf$$yPublished on 2018-11-26. Available in OpenAccess from 2020-11-26.
000890365 909CO $$ooai:juser.fz-juelich.de:890365$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180592$$aForschungszentrum Jülich$$b0$$kFZJ
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b1$$kFZJ
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b2$$kFZJ
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b5$$kFZJ
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b6$$kFZJ
000890365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b8$$kFZJ
000890365 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000890365 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000890365 9141_ $$y2021
000890365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000890365 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890365 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890365 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORROS SCI : 2018$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890365 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCORROS SCI : 2018$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890365 920__ $$lyes
000890365 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000890365 9801_ $$aFullTexts
000890365 980__ $$ajournal
000890365 980__ $$aVDB
000890365 980__ $$aUNRESTRICTED
000890365 980__ $$aI:(DE-Juel1)IEK-4-20101013
000890365 981__ $$aI:(DE-Juel1)IFN-1-20101013