Hauptseite > Publikationsdatenbank > Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys > print |
001 | 890365 | ||
005 | 20240708133223.0 | ||
024 | 7 | _ | |a 10.1016/j.corsci.2018.11.022 |2 doi |
024 | 7 | _ | |a 0010-938X |2 ISSN |
024 | 7 | _ | |a 1879-0496 |2 ISSN |
024 | 7 | _ | |a 2128/27105 |2 Handle |
024 | 7 | _ | |a WOS:000456902100018 |2 WOS |
037 | _ | _ | |a FZJ-2021-00910 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Tan, Xiaoyue |0 P:(DE-Juel1)180592 |b 0 |u fzj |
245 | _ | _ | |a Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys |
260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1612281135_24982 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a W-Cr-Zr systems with different compositions were oxidized in a mixed gas (Ar + 20 vol.% O2) atmosphere at 1000 °C. The power law which was used to describe the oxidation behaviour, indicates that W-11.2wt.%Cr-1.7wt.%Zr has an excellent oxidation behaviour. As analysed from the ten-hour exposure, W-Cr-Zr thin film oxidation shows a self-passivating stage followed by a linear oxidation stage. Furthermore, a study on the addition of zirconium indicates that zirconia particles act as diffusion barriers for the chromium cation diffusion and another function as the nucleation sites for the formation of the initial oxide scale. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Klein, F. |0 P:(DE-Juel1)166427 |b 1 |e Corresponding author |
700 | 1 | _ | |a Litnovsky, A. |0 P:(DE-Juel1)130090 |b 2 |
700 | 1 | _ | |a Wegener, T. |0 P:(DE-Juel1)161367 |b 3 |
700 | 1 | _ | |a Schmitz, J. |b 4 |
700 | 1 | _ | |a Linsmeier, Ch. |0 P:(DE-Juel1)157640 |b 5 |
700 | 1 | _ | |a Coenen, J. W. |0 P:(DE-Juel1)2594 |b 6 |
700 | 1 | _ | |a Breuer, U. |b 7 |
700 | 1 | _ | |a Rasinski, M. |0 P:(DE-Juel1)162160 |b 8 |
700 | 1 | _ | |a Li, P. |0 P:(DE-Juel1)143986 |b 9 |
700 | 1 | _ | |a Luo, L. M. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Wu, Y. C. |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1016/j.corsci.2018.11.022 |g Vol. 147, p. 201 - 211 |0 PERI:(DE-600)1500558-6 |p 201 - 211 |t Corrosion science |v 147 |y 2019 |x 0010-938X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890365/files/Evaluation%20of%20the%20high%20temperature.pdf |y Published on 2018-11-26. Available in OpenAccess from 2020-11-26. |
909 | C | O | |o oai:juser.fz-juelich.de:890365 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180592 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166427 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130090 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)157640 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)2594 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)162160 |
913 | 0 | _ | |a DE-HGF |b Energie |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Methods and Concepts for Material Development |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-04 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CORROS SCI : 2018 |d 2020-09-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-04 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CORROS SCI : 2018 |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|