
Fachhochschule Aachen
Campus Jülich

Department: Medizintechnik und Technomathematik
Degree program: Angewandte Mathematik und Informatik

Parareal in Julia with Singularity

Masterthesis from

Isabel Heisters
Jülich, December 2020





Declaration of independence

This work is made and written by myself. No other sources and tools
have been used than those indicated.

Place and date Signature

The thesis was supervised by:

First examiner: Prof. Dr. Johannes Grotendorst
Second examiner: Dr. Robert Speck

This thesis was done at :

Jülich Supercomputing Centre
Forschungszentrum Jülich GmbH





Abstract

In this thesis a Julia version of the parallel-in-time method Parareal is in-
troduced. Parareal decomposes the time as an approach for parallelization.
Parareal is an hierarchical, iterative algorithm that uses a coarse, cheap inte-
grator to propagate information quickly forward in time in order to provide
initial values for the parallelized original time integration scheme. The prob-
lems here used to test the Parareal algorithm are the Lorenz equation, the
heat equation and the Allen-Cahn equation. Julia is a programming language
that was specifically designed to be used for numerical applications and par-
allelization. Julia is becoming more popular due to the fact that it is easier
to implement than C but has a better runtime than Python. Julia is a new
language and not available on most host systems. Singularity is a container
solution to create the necessities for scientific application-driven workloads. By
using a container the user can configure the environment in which the applica-
tion can run independently of the host system and its software specifications.
This thesis shows how a Singularity container for the Parareal algorithm

implemented in Julia can be built. The container is portable to different hosts
like HPC and cloud systems without having a runtime overhead in comparison
to the runtime without a container.

V



Zusammenfassung

In dieser Arbeit wird der Parareal-Algorithmus als Werkzeug zur Paralleli-
sierung vorgestellt. Parareal zerlegt die Zeit als Ansatz zur Parallelisierung.
Parareal ist ein hierarchischer, iterativer Algorithmus, der einen günstigen In-
tegrator verwendet, um Informationen schnell in der Zeit vorwärts zu senden,
um Anfangswerte für das parallelisierte ursprüngliche Zeitintegrationsschema
bereitzustellen. Die Probleme, die hier zum Testen des Parareal-Algorithmus
verwendet werden, sind die Lorenz-Gleichung, die Wärmeleitungsgleichung und
die Allen-Cahn-Gleichung. Julia ist eine Programmiersprache, die speziell für
numerische Anwendungen und Parallelisierung entwickelt wurde. Julia wird
immer beliebter, da sie einfacher zu implementieren ist als C, aber eine bes-
sere Laufzeit als Python hat. Julia ist eine neue Sprache und auf den meisten
Host-Systemen nicht verfügbar. Singularity ist eine Containerlösung, mit dem
Ziel die Vorraussetzung für wissenschaftliche Projekte zu schaffen. Durch die
Verwendung eines Containers kann der Benutzer die Umgebung konfigurieren,
in der die Anwendung unabhängig vom Hostsystem und dessen Softwarespe-
zifikationen laufen kann.
Diese Arbeit zeigt, wie ein Singularity-Container für den in Julia implemen-

tierten Parareal-Algorithmus gebaut werden kann. Der Container ist auf ver-
schiedene Hosts wie HPC- und Cloud-Systeme portierbar, ohne einen Laufzeit-
Overhead im Vergleich zur Laufzeit ohne Container zu haben.

VI



Contents
1. Motivation 1

2. The Parareal algorithm 3
2.1. Classification in literature . . . . . . . . . . . . . . . . . . . . . 3
2.2. Mathematical approach . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. A testbed 11
3.1. Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Lorenz system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3. Heat equation in 1D with periodic boundary conditions . . . . . 15
3.4. Allen-Cahn Equation . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Containerization 21
4.1. Introduction to virtualization . . . . . . . . . . . . . . . . . . . 21
4.2. Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3. Example: Singularity container for Julia and OpenMPI . . . . . 26

5. Testing with Singularity 31
5.1. Singularity on Jureca . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2. Portability to other hosts . . . . . . . . . . . . . . . . . . . . . . 34
5.3. Singularity with a different MPI version . . . . . . . . . . . . . 36

6. Summary and outlook 39

A. Appendix 41
A.1. Singularity Definition File . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 48

VII



List of Figures
2.1. Visualization of the Parareal algorithm with c=1 . . . . . . . . 7
2.2. Visualization of the Parareal algorithm with c=2 . . . . . . . . 9

3.1. Solution of the Lorenzsystem over time t = (0, 100) with stepsize
∆t = 0.01 and explicit Euler as solver . . . . . . . . . . . . . . . 13

3.2. Error and Iteration of the Lorenz system over time solved with
Euler as coarse and fine solver with nf = 10 for different nc run
on 8 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Runtime of the Lorenz equation with different number of cores
and number of time steps nt . . . . . . . . . . . . . . . . . . . . 14

3.4. Error of the heat equation over nx and IMEX-Euler method as
coarse and fine solver for different nc and nf = 10 . . . . . . . . 16

3.5. Number of iterations of the heat equation with periodic boundry
conditions over time and IMEX-Euler method as coarse and fine
solver with nf = 10 for different nc and nx = 256 . . . . . . . . 17

3.6. Runtime of the heat equation for nx = 256 with different number
of cores and number of time steps nc and nf = 10 . . . . . . . . 17

3.7. Calculated and exact Radius of the Allen-Cahn equation with
IMEX-Euler and stabilized IMEX-Euler . . . . . . . . . . . . . 19

3.8. Calculations with Parareal of the radius, error of the radius and
iteration number against time with stabilized IMEX-Euler for
different nc, different nx and nf = 10 . . . . . . . . . . . . . . . 20

3.9. Runtime of the Allen-Cahn equation for nx = 128 with different
number of cores and number of time steps nt and . . . . . . . . 20

5.1. Run time in seconds of the Lorenz equation run on Jureca with
Open MPI comparing a native run and a run with a container . 31

5.2. Run time in seconds of the heat equation run on Jureca with
Open MPI comparing a native run and a run with a container . 32

5.3. Run time in seconds of the Allen-Cahn equation run on Jureca
with Open MPI comparing a native run and a run with a container 33

5.4. Run time in seconds of the Allen-Cahn equation run on Jureca
on multiple nodes with Open MPI comparing a native run and
a run with a container . . . . . . . . . . . . . . . . . . . . . . . 33

5.5. Run time in seconds of the Allen-Cahn equation run on Jusuf
with Open MPI compared to the runtime on Jureca run with a
container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

VIII



5.6. Run time in seconds of the Allen-Cahn equation run on Jureca
with Intel MPI comparing a native run and a run with a con-
tainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7. Run time in seconds of the Allen-Cahn equation run on Jureca
on multiple nodes with Intel MPI comparing a native run and
a run with a container . . . . . . . . . . . . . . . . . . . . . . . 38

5.8. Run time in seconds of the Allen-Cahn equation run on Jureca
on multiple nodes comparing Open MPI and Intel MPI as well
a native run and a run with a container . . . . . . . . . . . . . 38

IX



List of Tables
5.1. Runtime in seconds of the Allen-Cahn equation with Parareal

and IMEX Euler as integrator, nc = 128 and nf = 10 compared
for different hosts . . . . . . . . . . . . . . . . . . . . . . . . . . 36

X



Listings
4.1. Header of the definition file . . . . . . . . . . . . . . . . . . . . 27
4.2. Environment of the definition file of the Julia Open MPI container 27
4.3. Installation of Julia into the container . . . . . . . . . . . . . . . 28
4.4. Installation of Open MPI into the Container . . . . . . . . . . . 29
4.5. Binding MPI into Julia . . . . . . . . . . . . . . . . . . . . . . . 30
4.6. Building of Julia packages . . . . . . . . . . . . . . . . . . . . . 30

5.1. Specifications of the container with Intel MPI . . . . . . . . . . 37

A.1. Definition file Open MPI . . . . . . . . . . . . . . . . . . . . . . 41
A.2. Definition file Intel MPI . . . . . . . . . . . . . . . . . . . . . . 44

XI





1. Motivation
Classical numerical methods to solve initial value problems run serial in time,
which means the time is divided into individual time steps and one step is pro-
cessed after the next. To speed up solving the problems mostly parallelization
in the spatial domain is used especially since supercomputers are easier to use
parallelization as a tool to reduce the run time is very common. The fast devel-
opment of supercomputers leads to limitations where more computing power
cannot save you run time. An idea to solve this problem is a parallelization in
the time domain.
Most of the time when working on parallelization C or Python is used. C is

popular for achieving a high execution speed. In Python on the other hand it
is easy to write code. A new language that is trying to combine these two ben-
efits is Julia. Julia is a programming language that was specifically designed
to be used for numerical applications and high-performance computing. Ju-
lia [Bez+14] is a dynamic high-performance programming language. The first
stable open-source version was released in February 2012, the development of
the language began in 2009. Julia is mainly used in scientific computing.
The language Julia is in contrast to other programming languages almost ex-
clusively written in Julia itself. Only basic functions, such as integer opera-
tions, for loops, recursion or float operations, use C operations or work with
C structures. Julia works with a Just-in-Time (JIT) compiler. The code is
converted to machine code during compilation. Just-in-time compilation dif-
fers from so-called Ahead-of-Time (AOT) compilations in that these programs
compile during run time, whereas AOT compilers compile before run time.
The parser, which converts the Julia code to machine code, is implemented in
Scheme [Dyb09] and is converted to optimized machine code using the LLVM
compiler framework [LA04], a virtual machine. For this purpose, the frame-
work uses the compiler backend of Clang for C/C++, which provides excel-
lent auto-SIMD vectorization and can lead to high performance. This happens
even though Julia is a dynamic language since this usually only occurs in static
programming languages. Julia was also developed to make parallel implemen-
tation, whether shared memory computing or distributed memory computing,
easier.
Julia programs can be executed from the command line and Julia as a lan-

guage offers an interactive session. In this session, commands can be tested,
programs and normal shell commands can be executed. The interactive ses-
sion can also be used to manage Julia’s packages. Julia can be developed

1



in different environments. One possibility is to use the development environ-
ment Juno, which is specially designed for Julia. It is based on Atom [Git],
an open-source text editor developed by the project hosting service GitHub
for Windows, macOS, and Linux. It is also possible to write Julia in Jupyter
notebooks [Jup], which are based on the principle of the IPython notebook.
This means that the Jupyter notebook can not only work with Julia programs
but also Markdown and up to 40 other programming languages.
Julia is a new programming language and not available on all host systems.

Therefor Singularity can be used as a tool to create an environment in which
the application can run. Singularity is a container solution with the goal
to create the necessities for scientific application driven workloads. Inside a
container an independent environment which can differ from the host can be
executed. This can be of an advantage, because Julia is a new programming
language and is not configured on all host systems. Additionally, by using a
container the user can configure all packages for example in Julia independently
and is not dependent on the host systme like a supercomputer. The goal is
that the run time of the application with Singularity should be approximately
the same as without the container.
The goal of this work is to have a working Parareal algorithm which can be

applied to different problems written in Julia that runs on the Supercomputer
Jureca with MPI inside a Singularity container without a significant timing
overhead. The container should be portable to different hosts as well. The
implementation should be easy to adjust for different problems and different
solvers.

2



2. The Parareal algorithm
In this chapter, the Parareal algorithm is introduced. First, a review is given
on what was published in the past. After that, the algorithm is presented and
analyzed. Finally the parallelization strategy is introduced as well as a review
of how efficient the parallelization is.

2.1. Classification in literature
The following introduction is based on [GV07; GH08]. The time-parallel algo-
rithm Parareal was published in 2001 by Lions et al. [LMT01], to solve initial
value problems parallel not in space but in ”real time”. This motivation led
to the name for the algorithm, Parareal, as a composition of parallel and real
time.
The first idea for parallelizing initial value problems in the time domain was

published in 1964 by Nievergelt [Nie64]. In his algorithm, starting with an esti-
mate, more exact approximations can be calculated in parallel on each timestep
and these approximations are finally combined in serial. This approach of Niev-
ergelt has been further developed by Bellen and Zennaro and was published in
1989 [BZ89]. Bellen and Zennaro’s method is based on iteratively solving the
fixed-point equation with the Steffens-Algorithm on a discrete level. After that
Chartier and Phillipe [CP93] and Saha et. al. [SST97] published in 1993 and
1996 algorithms which are also working by iteratively solving the fixed-point
equation on a continuous level. The Parareal algorithm can be considered as
a special variant of the method of Saha et. al.. To use Parareal, the time
has to be decomposed into time intervals. The idea is to calculate for every
time interval a solution for an initial value problem in parallel. The required
starting value for the initial value problem is calculated in serial with a fast
but inaccurate solver. With the starting value, the initial value problem can
be solved for each time interval in parallel with a time intensive but more ac-
curate solver. With an iteration rule, Parareal corrects the starting value with
a more accurate computed value.
The convergence analysis of Parareal was published in 2008 in [GH08]. They

showed the superlinear convergence of the algorithm for a system of nonlinear
differential equations mathematical and also with the help of different exam-
ples, such as the Lorenz equation, numerically. The stability of Parareal for
autonomous systems was investigated in [SR05].

3



In the following, some current applications of Parareal are shown to highlight
the relevance of the algorithm. Ariel. et. al. [GT15] successfully used Parareal
for the solution of strongly oscillating differential equations by combining it
with solvers for multi-scale calculations. Baudron et. al. [Bau+14] used
Parareal to parallelize a solver for the neutron diffusion equation. In [KR14]
Parareal was combined with a space-parallel, time-serial solver for the solution
of the Burger’s equation. It has been shown that the speedup of the combined
space and time parallel solver is better than the space parallel version. In the
publication by Ruprecht et. al. [RSK16] the algorithm was applied to diffusion
problems, such as the heat equation. Good convergence properties were shown
due to the variation of the problem coefficients. Clarke et.al. [Cla+19] used
the Parareal algorithm to speed up the simulations on the natural dynamos in
the Earth and Sun.

2.2. Mathematical approach
A problem to solve with the Parareal algorithm is for example a time-dependent
initial value problem of the type

qt(t) = −f(q), q(0) = q0, t ∈ [0, T ]. (2.1)

Parareal as a method to parallelize the time needs a decomposition of the time
[0, T ] into nc intervals [ti, ti+1] with equal step size ∆t = ti+1 − ti, i ∈ 0, .., ng
with 0 = t0 < ... < ti < ti+1 < ... < tn = T . The algorithm involves as
described before in section 2.1 two solvers. An inaccurate one referred to as G
and an more accurate one referred to as F . Both solvers are usually single-step
methods and are determined by integration schemes. G computes the solution
on the time intervals with ∆t, i.e. G is now referred to as G∆t. F computes a
more accurate solution on ∆t. To do this the interval is also divided into nf
sub intervals so that δt = 1

nf
∆t. This means F is now referred to as Fδt.

The initial value q0 is determined for every interval with

q0
i+1 = G∆t(q0

i , ti+1, ti),

i is the number of the timestep. For every iteration step

qk+1
i+1 = G∆t(qk+1

i , ti+1, ti) + Fδt(qki , ti+1, ti)− G∆t(qki , ti+1, ti)
is calculated, where k is the current iteration number.
In algorithm 1 the process of the calculation is shown. In lines 1 − 4 the

starting value q0
i+1, i ∈ [0, nc − 1] is calculated for each timeinterval (ti, ti+1)

using the starting value of the previous interval q0
i and the inaccurate solver

G∆t. The main calculation is done in lines 6− 14. First for every timeinterval
(ti, ti+1) the calculation with the more accurate solver Fδt is done. This can

4



Algorithm 1 Parareal Algorithm
1: q0

0 = q0
2: for i = 0 to nc − 1 do
3: q0

i+1 = G∆t(q0
i , ti+1, ti)

4: end for
5: k = 0
6: repeat
7: for i = 0 to nc − 1 do . Parallel Step
8: q̃k+1

i+1 = Fδt(qki , ti+1, ti)
9: end for

10: for i = 0 to nc − 1 do
11: qk+1

i+1 = G∆t(qk+1
i , ti+1, ti) + q̃k+1

i+1 − G∆t(qki , ti+1, ti)
12: end for
13: k = k + 1
14: until k = Nmaxit or rk < ε

be done in parallel, because for the calculation only values of the calculated
timestep are needed. This differs from the other steps. Therefor a fine solver
can be used in line 8. After that in line 11 qk+1

i+1 is calculated. As a condition
to stop the calculations in line 14 either the number of iterations or an error
errk, where

errk = max
i=1,..,nc

||qk+1
i+1 − qki+1||

is used. This means a maximum number of iterations is set, but if errk < ε
the iterations can be stopped earlier. ε is an user-defined value, which can be
regarded as the upper bound for the error.
Parareal can historically be seen as a multigrid method or a predictor-

corrector method. So far it has been seen from the perspective of the predictor-
corrector method. The inaccurate solver G predicts the value and the more
accurate one F corrects the solution. Gander and Vandewalle [GV07] showed
that Parareal can be classified as a time-multigrid method. Multigrid methods
are a group of algorithms where a numerical problem, most of the time a par-
tial differential equation (PDE), is solved using a hierarchy of discretizations.
Multigrid methods perform a series of approximation uk for k = 1, 2, ... from
a given initial value on a grid Ωh with step size h. Ah is the discretization of
the PDE on this grid. Multigrid methods are a class of iterative methods. For
every iteration, first a smoothing step is performed. The smoothing is deter-
mined by the smoothing operator S. The smoothed approximation is called
ũk. After this, the problem is transferred onto a coarser grid ΩH with the
restriction parameter IHh . On the coarser grid, the solution is approximated
to solve the problem. The approximated solution on the coarse grid is called
Uk+1. The approximation is transferred back to the original fine grid with the

5



prolongation operator IhH and corrected with the smoothed approximation ũk.
An iteration of the two grid variant of the multigrid method can be written as

ũk = S(uk, b) (2.2)
AH(Uk+1) = IHh (b− Ah(ũk)) + AH(IHh ũk) (2.3)

uk+1 = ũk + IhH(Uk+1 − IHh ũk) (2.4)

Shown in equation (2.2) is the smoothing step. Equation (2.3) defines the
coarse grid problem. Equation (2.4) can be seen as the correction step. Gander
and Vandewalle [GV07] showed that every operator of the iteration can be
selected in such a way that the iteration of a Parareal step can be expressed
by the two grid iteration.
The convergence behavior of Parareal is dependent on the convergence prop-

erties of the solvers and the problem. To analyse the convergence properties
the problem

ut(t) = −f(u), u(0) = u0, a ∈ C, t ∈ [0, T ]. (2.5)
is used. For the coarse solver G the Euler method is used. For the fine solver F
the exact solution of the timestep is used. Lions, Maday and Turinci [LMT01]
showed in their original paper that

max
1≤i≤nc

|ukn − u(tn)| ≤ Cp∆tk+1,

when Cp is a variable that grows with order p. This means that for a fixed
iteration k the algorithm behaves in ∆t like an O(∆tp+1) method. Thereby
the case that k goes to infinity is not covered. Gander and Hairer [GH08]
showed for this case that if Fδt(qki , ti+1, ti) is denoted as the exact solution at
ti+1 as before and G∆t(qki , ti+1, ti) is a one step method with local truncation
error bounded by C1∆tp+1 and if

|G(x, t, t+ ∆t)− G(y, t, t+ ∆t)| ≤ (1 + C2∆t)|x− y|

the following estimate holds:

max
1≤n≤nc

|u(tn)−Uk
n | ≤

C1∆tk(p+1)

k! (1+C2∆t)nc−1−k
k∏
j=1

(nc−j) max
1≤n≤nc

|u(tn)−U0
n|.

(2.6)
The product term ∏k

j=1(N − j) in (2.6) becomes 0, when the number of iter-
ations reaches L. This shows that the Parareal algorithm terminates with a
converged solution for any ∆t on any bounded time interval in N − 1 steps.
Typically you would like to stop the iteration with a converged or sufficiently
accurate solution well before N − 1 iteration steps, since otherwise there is no
speedup in the parallel process.

6



The stability is also needed for an analysis of the algorithm. Staff and
Ronquist [SR05] showed that the method is stable for a system of ordinary
differential equations (ODE) if the eigenvalues λi are real. If the eigenvalues
are imaginary it was numerically proven that Parareal is unstable.

2.3. Parallelization
This section is about the theoretical efficiency of the Parareal algorithm. Paral-
lel efficiency is needed to prove that it is a good idea to parallelize the algorithm
in the first place.
To show the parallel efficiency it is assumed that the processors are identical

and solving a given timestep of the same length always takes up the same
amount of time. The run time for solving a timestep on the coarse level is tC ,
for solving on the fine level is tF . The number of parallel cores used is referred
to as Np. The coarse length of a timestep ∆t can also be defined as ∆t = T

cNp
,

where c ∈ N>0 and ng = cNp.

Figure 2.1.: Visualization of the Parareal algorithm with c=1

To show parallel efficiency first an example for c = 1 is used, which means
that the number of coarse timesteps is the same as the number of parallel
cores. An example of a parallel run with Np = 4 and c = 1 is shown in figure
2.1. We can see the calculation on the coarse level in blue and marked with
a ”G”. The calculation on the fine level is in red and labeled with an ”F”. P1
to P4 are representing the four cores used. An arrow marks communication

7



between those cores. Each timestep and therefore each core in this example
performs the maximum number of iterations for its timestep as explained in
chapter 2.2. It was shown in chapter 2.2, that Parareal is reasonable to use
if the number of iterations is small. Later in this chapter, it is shown from
the parallelization perspective, why a small number of iterations should be
the target. To show efficiency first the run time in the worst case is needed.
The worst-case with the longest run time is in this example on P4. Parareal
splits, as explained in chapter 2.2, into a serial part and a parallel part. The
serial part on P4 is the first coarse calculation plus the waiting time of the
communication and the calculation before on the other cores. The time of
the communication between the cores is neglected here. This means that the
serial time would be four times the run time of solving a coarse timestep in
this example. For the parallel part in each iteration, the run time of solving
coarse and fine is added. Here four iterations are made. The worst run time,
therefore, is eight times the coarse run time plus four times the fine run time.
The following is a more general approach to illustrate the calculation of the
run time and efficiency.
To calculate the efficiency the serial time to solve the problem referred to as

T1 is needed. To get a similar numerical result calculations on the fine level
have to be made for every timestep so that T1 = NptF .
The parallel time to solve the problem is referred to as Tp and consists of a

serial part and a parallel part as explained before. The worst case is considered
for the calculation. The serial part is the initialization of each timestep. The
serial time is NptG because the last processor has to wait for the initialization
of every timestep. The parallel time depends on the number of iterations k.
In every iteration, the solver does a calculation on the fine level and on the
coarse level, which means the parallel time is k(tF + tG). The total time is
therefore Tp = NptG + k(tF + tG).
A unit needed to measure parallel efficiency is the speedup S. Speedup

measures the relative performance compared to the serial performance. Ideally,
the speedup should be linear with the number of cores used, which means
S = Np. In this case the speedup S1 is

S1 = T1

Tp
= NptF
NptG + k(tF + tG) = 1

tG
tF

+ k
Np

(1 + tG
tF

)
. (2.7)

The relationship between a coarse timestep and a fine timestep tG
tF

is called α.
The speedup in this case is linear. If the equation (2.7) is shifted it can be
shown that

S1 = 1
Npα + k + kα

Np < Np,

because Npα + k + kα > 1.

8



So the parallel efficiency is

E1 = S1

Np

=
1

α+ k
Np

(1+α)

Np

= 1
Npα + k(1 + α) . (2.8)

The parallel efficiency depends on the number of iterations k and the relation-
ship α between a coarse timestep and a fine timestep. These two factors have
an influence on each other. The smaller α gets the fewer iteration k are needed.
Ideally E = 1. Because of (2.8) it can be estimated as E1 ≤ 1

k
. This shows

that the algorithm is dependent of the number of iterations. The smaller the
number of iterations, the larger is E. To make E closer to 1, α should be
small. If α is small, then tF >> fG and this could mean, that it takes a long
time to compute. Therefore, both must be balanced.

Figure 2.2.: Visualization of the Parareal algorithm with c=2

Most of the time when running Parareal there are more coarse timesteps
than parallel cores. In figure 2.1 there are as much timesteps as parallel cores
so that c = 1. The case which is now being considered has as a prerequisite
that c > 1. An example for c = 2 can be seen in figure 2.2. The structure
of the figure is the same as in figure 2.1, but each core has to handle two
timesteps. You can see that the timesteps are worked on in blocks. The first
block calculates the first four timesteps. After each core has calculated the
result for his timestep, the first block is finished and P4 sends the results of
the first block to P1 so P1 has a starting value for the second block. In the
second block, the last four timesteps are solved as described in figure 2.1. If
c > 1 you have to consider a change of parameters. The coarse length of a
timestep is ∆t = T

cNp
. The serial time to solve the problem is T1 = cNptF . For

9



the parallel time Tp the two parts, the serial part, and the parallel part have
to be considered. The serial part is cNptC because each core has to calculate
the starting value for a timestep c times. The parallel part is ∑c

i=1 ki(tC + tF ),
where ki is the number of iterations in each timestep i. The total time is
Tp = cNptC +∑c

i=1 ki(tC + tF ). This means the Speedup Sc is

Sc = 1
tC
tF

+
∑c

i=1 ki

cNp
( tC
tF

+ 1)
= 1
α +

∑c

i=1 ki

cNp
(α + 1)

.

The speedup Sc is not linear, because Sc < Np. The parallel efficiency Ec is

Ec = 1
Npα +

∑c

i=1 ki

c
(α + 1)

≤ c∑c
i=1 ki

.

The efficiency is therefore as estimated before dependent on the number of
iterations. The same conclusions as with E1 can be drawn. Parareal is ideal if
k = 1 iterations are needed. For good parallel performance, k must be small.

10



3. A testbed
In this section, the Parareal algorithm is tested. Three different problems are
used to test the convergence properties and the efficiency of the algorithm.
Parareal is implemented in Julia.

3.1. Preliminary remarks
The system on which the Parareal algorithm is to be parallelized is the super-
computer Jureca [Jül16]. It is located at the Jülich Supercomputing Centre,
an institute of the Jülich Research Centre, and consists of a cluster module
and a booster module. The cluster is based on a hybrid architecture. A total
of 1872 computation nodes and 12 visualization nodes are available. The com-
putation will run on its Cluster module especially on nodes, which have two
Intel Xeon E5-2680 v3 Haswell CPUs. These CPU’s have Intel Hyperthread-
ing Technology, a technology which makes it possible for each processor core
that is physically present, to address two virtual cores and shares the workload
between them when possible. The nodes are connected with Mellanox EDR
InfiniBand with 100 GiB/s. The topology of the nodes is a non-blocking fat
tree.
The chosen tool for parallelization is the Message-Passing Interface (MPI).

MPI describes a standard that regulates the exchange of messages during par-
allel calculations on distributed computer systems [Pad11]. It defines a collec-
tion of operations and their semantics, i.e. a programming interface, but no
concrete protocol and no implementation. The advantage of MPI is that it is
standardized, portable, and widely used. The implementation of the standard
is a library of subfunctions that can be used in Fortran, C, and C++. Fur-
thermore, there are freely available MPI implementations.
MPI is based on the Message-Passing Programming Model and builds on the
so-called SPMD (Single-Program Multiple-Data) programming model. This
means that all cores execute the same program with different data. Each pro-
cess has its own private memory, which can be distributed or contiguous. One
process cannot directly access the data of another process. Each process runs
the same program. The data exchange between the processes is done by ex-
plicitly sending and receiving messages. The usage of MPI in Julia is done
by the package ”MPI.jl”, which is a wrapper class. This class is based on
the C implementation of the MPI standard. This wrapper class is inspired by

11



mpi4py [DPS05], a package for using MPI in Python. The MPI package in
Julia can be added via the package manager. A difference to the use in C and
Fortran is the sending of the data packages. In Julia, only arrays can be sent
and no data types need to be specified.
For this testbed the first idea was to use the ”DifferentialEquations.jl” pack-

age to provide the solvers for Parareal [RN17]. The package is a suite for nu-
merically solving differential equations written in Julia. It implements various
solvers for the different differential equations for example solvers for discrete
equations, ordinary differential equations, split and partitioned ODEs, and a
lot more. More information can be found in [RN17]. By using the Differential
Equation Package a lot of fast and optimized solvers are available to use with-
out the need to implement them. The package is introduced as easy to use but
can be specified a lot for the given problem. The package integrates BLAS on
a basic level to speed up the Code. BLAS is short for Basic Linear Algebra
Subprograms [Bla+02]. Julia integrates the C version of this library. BLAS
provides linear algebra routines such as matrix multiplication, cross-product,
and vector addition naming a few. BLAS implementations are often optimized
for speed, so using them can bring performance benefits. BLAS is integrated
in a lot of other languages as well. If ”DifferentialEquations.jl” is used without
parallelizing and without adjusting the number of cores used, the runtime of
most algorithms is quite fast. If the code is parallelized with MPI for example
and the number of BLAS cores is smaller the given fast execution of the code
is slower, which can lead to results, which are not predicted. Another prob-
lem could be, that if more advanced algorithms should be used it is not clear
which algorithms are used in the background to solve this. An example of this
is IMEX-Euler method. IMEX-Euler method is used to solve semi-implicit
problems. IMEX-Euler method needs to solve an explicit part and an implicit
part. The solving of the implicit part is problematic here because Newton’s
method is always used to solve this problem. Newton’s can be used in any
case. To calculate Newton’s method, a Jacobi Matrix is needed. If the Jacobi
matrix is not given, Julia uses auto differentiation to calculate the Jacobi ma-
trix. This first needs a lot of time but also the step size has to be sufficiently
small for the algorithm to work. To avoid this, instead of a function a system
of linear equations is given as the implicit part, but ”DifferentialEquations.jl”
does not check for that. By solving a system of linear equations instead of us-
ing Newton’s algorithm a lot of time could be saved. The tests run confirmed
not to use this package, but to self-implement the solvers, because the run
time is better, bigger stepsizes can be used and it can be exactly seen, what
code is behind the used solvers.

12



3.2. Lorenz system
The Lorenz system is a set of differential equations first expressed around 1963
by Edward N. Lorenz. It is a simplified mathematical model for atmospheric
convection. It is used here as a test problem. The model is a system of three
ordinary differential equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

where t ∈ [0, 10] and σ = 10, ρ = 28 and β = 8
3 is chosen [GH08]. The initial

value for to test this problem is u0 = (1, 0, 0). To solve this problem explicit
Euler method as coarse and fine solver can be used. Explicit Euler method
calculates the time step tn+1 = tn + h as yn+1 = yn + hf(tn, yn). The solution
for the problem if only Euler method without Parareal is used can be seen in
figure 3.1. In this plot a chaotic behavior is seen. Depending of the choice of

Figure 3.1.: Solution of the Lorenzsystem over time t = (0, 100) with stepsize
∆t = 0.01 and explicit Euler as solver

variables σ, ρ, β different simplified physical models can be emulated.

To check how the Parareal converges the error and the iteration number over
time has to be considered. In figure 3.2 in (a) the error and in (b) the number
of iterations over time and with different sizes of time steps and so different
nc are shown. In 3.2a it can be seen that the smaller the time step is chosen,
the smaller the error is. For every time stepsize first, the error becomes bigger

13



(a) Error against time for different nc (b) Iteration against time for different nc

Figure 3.2.: Error and Iteration of the Lorenz system over time solved with
Euler as coarse and fine solver with nf = 10 for different nc run
on 8 cores

but after approximately t = 0.3 remains at about the same level. In 3.2b it
can be seen that the smaller the time step the fewer iterations are used as a
maximum.

Figure 3.3.: Runtime of the Lorenz equation with different number of cores
and number of time steps nt

In Figure 3.3 the run-time tests made for the Lorenz equation are shown.
The tests are made on Jureca with Julia 1.3.1 and Intel MPI. On the x-axis,
the number of cores and on the y-axis, the runtime of the code can be seen.
The tests are made for different size of coarse time steps nc and the fine time
steps is set as nf = 10. The typical behavior that with more cores the runtime
becomes smaller and with more coarse time steps nc the runtime becomes
bigger is not seen here. The behavior is really chaotic. A problem could be
that as seen in Figure 3.2b the number of iterations for 8 cores is not small.

14



Also, the timings are fairly small. Therefore the calculations are run multiple
times and the average runtime of them is taken in this plot.

3.3. Heat equation in 1D with periodic boundary
conditions

Another test problem is the heat equation in 1D with periodic boundary con-
ditions on a spatial finite differences grid. The heat equation is a partial
differential equation. The equation to solve is

∂u(x, t)
∂t

= −4 u(x, t) + f(x, t) on Ω (3.1)

(3.2)

with periodic boundary conditions, where Ω = (0, 1), 4ρ = div(grad(ρ)) is the
Laplace operator.
The Laplace operator in 1D can be discretized as a matrix A as

4 = A = 1
h2



−2 1 0 · · · 0
1 −2 1 . . . ...
0 1 . . . . . . 0
... . . . . . . . . . 1
0 · · · 0 1 −2


where h is the spatial step size. Due to the periodic boundary conditions, the
matrix changes here to

4 = A = 1
h2



−2 1 0 · · · 1
1 −2 1 . . . ...
0 1 . . . . . . 0
... . . . . . . . . . 1
1 · · · 0 1 −2


. (3.3)

The right-handside of the equation 3.2 f is chosen as

f(x, t) = ((kπ)2 cos(t)− sin(t)) sin(kπx),

so that the exact solution is

u(x, t) = cos(t)sin(kπx).

The exact solution is needed to calculate the error.

15



IMEX-Euler method is used as a fine and coarse solver. It is here used
because the heat equation with periodic boundary conditions is semi-implicit
and therefore needs a specific solver to solve the implicit, stiff part and the
explicit also called non-stiff part of the equation. IMEX-Euler is an integrator
that can solve such an equation. IMEX-Euler is defined in equation (3.4),
where q(ui+1, ti+1) is the implicit part and p(ui, ti) is the explicit part. In
this specific case q(ui+1, ti+1) = Aui+1, because of the Laplace operator and
p(ui, ti) = f(x, t). The equation can be rewritten to equation (3.5). This
means that instead of solving an implicit problem, the problem can now be
seen as solving an equation system.

ui+1 = ui + ∆tq(ui+1, ti+1) + ∆tp(ui, ti) (3.4)
⇔ ui+1 = ui + ∆tAui+1 + ∆tf(x, ti)

⇔ (I −∆tA)ui+1 = ui + ∆tf(x, ti) (3.5)

Figure 3.4.: Error of the heat equation over nx and IMEX-Euler method as
coarse and fine solver for different nc and nf = 10

In figure 3.4 on the x-axis the number of the spatial grid points nx also
known as degrees of freedom and on the y-axis the error at t = 0.1 is plotted
for different numbers of time intervals nc. This kind of plot is used to show
convergence and find the sweet spot. The sweet spot is the point at which the
error starts staying the same. It is important to know for simulations at what
specifications a small error in comparison to the size of the problem is reached.
It applies that the bigger nx is the smaller the error is for nx > 256. The error
till the sweet spot is reached goes down like O(n2). By looking at the different
number of time steps nc it can be seen, that the error is halved if the number
of time steps is doubled.

16



Figure 3.5.: Number of iterations of the heat equation with periodic boundry
conditions over time and IMEX-Euler method as coarse and fine
solver with nf = 10 for different nc and nx = 256

In figure 3.5 for nx = 256 the average number of iterations for different
numbers of time steps nc is applied. The more time steps are used, the smaller
is the average number of iterations. In general, the number of iterations is
fairly small. This is good, because like explained in chapter 2.3 the smaller
the number of iterations is, the better the parallel efficiency can be.

Figure 3.6.: Runtime of the heat equation for nx = 256 with different number
of cores and number of time steps nc and nf = 10

Figure 3.6 shows the runtime of the example for different nc and number of
cores with nx = 256 and nf = 10. The bigger nc is the longer is the runtime.
Between the runtimes is a factor 2. Till 8 cores the runtime gets longer, but

17



after that, it gets smaller.

3.4. Allen-Cahn Equation
Another problem interesting to look at is the two-dimensional Allen-Cahn
equation [AC79]. The equation can be used to model various problems but has
become the basic model equation for the diffuse interface approach developed
to study phase transitions and interfacial dynamics in materials science. The
equation can be displayed as

∂u

∂t
= 4u+ 1

ε2 (−2u(1− u)(1− 2u)) = 0,

with periodic boundary conditions on [0, 1]2×[0, T ], T > 0, u(x, 0) = u0(x), x ∈
[0, 1]2, 4 is the Laplace operator introduced in equation (3.3) and ε is a scaling
parameter. This problem is also known as a phase field problem. Phase-field
models solve interfacial problems, which are characterized by a field, which
takes two distinct values, here, for instance, 1 and 0, in each of the phases,
with a smooth change between both values. This zone between the values
is determined by a parameter, here ε also called the diffuse interface width
parameter. If ε→ 0, the solution of the problem should behave like a piecewise
function.
As a initial condition

u0 = tanh
(
R0 − x2 + y2
√

2ε

)
.

is chosen. The initial condition describes a circle with initial radius R0. Over
time this circle should shrink. Its radius can be calculated as r(t) =

√
R2

0 − 2t.
Calculation of the error errt for every time step t is here done with the help of
the radius. To get the calculated radius the volume is used. For a exact solution
Vexact,t = π ∗max(R0 − 2t, 0) and rexact,t =

√
Vcalculated,t

π
. To get the calculated

error every time step checks, how many elements et of the spatial grid are
u > 0.5. The volume can therefore be calculated by Vcalculated,t = eth

2 and the
radius by rcalculated,t =

√
Vcalculated,t

π
. The error errt = |rcalculated,t− rexact,t| helps

as an indicator whether the calculation with Parareal produces reasonable
results. For calculation h < ε to catch the transition between the phases in
space and ∆t < ε2 get the transition of phases in time. Here ε = 0.04 is chosen.
As a fine and coarse solver, IMEX-Euler is used since the Allen-Cahn equation
is a semi-implicit equation. IMEX-Euler was introduced in equation (3.4) and
here be calculated as

(I −∆tA)ui+1 = ui + ∆tf(ui, ti).

18



Zhang and Du [ZD09] showed that normally the error for IMEX-Euler should
increase with ∆t ∼ ε3, but is increasing with ∆t ∼ ε2 for this specific case.
Zhang and Du [ZD09] propose a stabilized Euler, which can reach ∆t ∼ ε3 by
introducing a factor k for Allen-Cahn so that the equation is modified to

(I −∆tA)ui+1 + ∆tkui+1 = ui + ∆tf(ui, ti) + ∆tkui
⇔ (kI + 1

∆tI − A)ui+1 = (k + 1
∆t)ui + f(ui, ti).

Here k = 2
ε2

is chosen.
In Figure 3.7 the two approaches are tested on solving the Allen-Cahn equa-

tion. This test is done without Parareal and the stepsize ∆t = 0.001 was
chosen.

(a) Original IMEX-Euler (b) Stabilized IMEX-Euler

Figure 3.7.: Calculated and exact Radius of the Allen-Cahn equation with
IMEX-Euler and stabilized IMEX-Euler

In Figure 3.7 the calculated radius of the original IMEX-Euler is near to
the exact radius but gets distant fast. In Figure 3.7b the calculated radius of
the stabilized IMEX-Euler is overall closer to the solution. In the following
stabilized IMEX-Euler is used.
Figure 3.8 shows the calculations with Parareal. In the first row, the radius

is plotted against the time, in the second row the error of the radius is plotted
against the time and in the third row the number of iterations is plotted against
the time, with different nc. In the first column 3.8a is nx = 64, the second
3.8b is nx = 128 and the third 3.8c is nx = 256. Generally, the smaller nc is,
the closer the calculated radius is to the exact radius, the smaller the error is
and the fewer iterations are used. That applies to every nx. The bigger nx
gets the smoother is the radius as seen in the first row.
Figure 3.9 shows the runtime of the example for different nc and number of

cores with nx = 128 and nf = 10. The bigger nc is the longer is the runtime.
Between the runtimes is a factor of 2. Till 8 cores the runtime gets longer, but
after that, it gets smaller.

19



(a) nx = 64 (b) nx = 128 (c) nx = 256

Figure 3.8.: Calculations with Parareal of the radius, error of the radius and
iteration number against time with stabilized IMEX-Euler for dif-
ferent nc, different nx and nf = 10

Figure 3.9.: Runtime of the Allen-Cahn equation for nx = 128 with different
number of cores and number of time steps nt and

20



4. Containerization
Getting an application to run on a different host system than the own computer
can be challenging and time-consuming. Julia is a new programming language
and not installed on most host systems by default. Creating the environment to
run the applications presented in the last chapters can be challenging. In this
chapter, containerization is introduced as a tool to make this easier. At first,
virtualization in general is introduced and different virtualization strategies
are presented and compared. Then containerization in general and Singularity
as the tool chosen here is explained in more depth. An example of a container
for the application presented in chapter 3, its specifications are given and the
advantages of using a Singularity container in this specific case are explained.
This chapter is based on [KSB17] and [Inc].

4.1. Introduction to virtualization
Virtualization refers to the replication of a hardware or software object by
a similar object of the same type with the help of an abstraction layer. This
allows the creation of virtual, non-physical, devices or services such as emulated
hardware, operating systems, data storage or network resources. Virtualization
can basically be divided into three different main types, desktop virtualization,
hardware virtualization and operating-system-level virtualization, also known
as containerization. These types can be implemented with different tools.
Desktop virtualization is the concept of isolating the logical instance of an

operating system from the client that accesses it. The virtualization of the
desktop can be made locally or remotely. A use case is remote desktop vir-
tualization which is integrated into a client/server computing environment.
Application execution takes place on a remote operating system that com-
municates with the local client device over a network using a remote display
protocol through which the user can interact with an application. This type
of virtualization does not meet the requirement of our application, because a
desktop is not needed.
Hardware virtualization can be seen as the creation of a virtual machine that

acts like a real computer with a kernel and an operating system. Software exe-
cuted on a virtual machine like this is separated from the underlying hardware
resources. Virtual machines always distinguish between the host machine,
which is used by the virtualization and the guest machine, which is the vir-

21



tual machine. There are different types of virtual machines depending on the
use case. The most common use case of virtual machines is to run additional
isolated operating systems to the one that already runs on the host machine.
Virtual machines can be used to run many different applications on the same
machine, independent of the application’s requirements. The virtual machine
is completely isolated and can have an entirely different environment, including
operating system, hardware dependencies, software dependencies and libraries.
Virtual machines are extremely portable but come with large computational
overhead, due to the need of emulating an operating system and a kernel.
Another disadvatage of virtual machiens is it that due to the isolation there
can be additional complexities when trying to access host specific resources.
A virtual machine can be saved in a single image file. A widely known option
for working with virtual machines is VirtualBox [Ora]. VirtualBox is a cross-
platform virtualization application, which means that the virtual machine is
practically only limited by the hosts disk space and memory but not limited
in terms of the hosts operation system or hardware configuration as well as
the virtual machines operation system or configurations. It is also possible
to have a number of virtual machines running at the same time. It can run
anywhere from desktop machines to data center deployments and even Cloud
environments.
Operating system virtualization is an operating system paradigm in which

the kernel allows the existence of multiple isolated user-space instances. A
modern computer operating system usually segregates virtual memory into
kernel space and user space to provide memory and hardware protection. Ker-
nel space is strictly reserved for running an operating system kernel. User
space is the memory area where application software runs and in this case the
virtualization as well.
Such instances can for example be virtual environments or containers. Vir-

tual environments have the goal to create an isolated environment for a specific
project. The most used one is called Pip [PyP], a package manager purely for
Python packages. Another often used environment management system is
called Conda [20]. Using Conda it is possible to install packages into environ-
ments written in any language which even makes it suitable for non-Python
projects, although it is mostly used to create Python environments. All en-
vironments will always share all global Python packages and other software,
but will not fully isolate the host machine from the environment. Since the
application runs in Julia and on a HPC system a virtual environment is not
the choice of virtualization in this thesis.
A container on the other hand is an isolated process that shares the same

kernel as the host operating system, as well as the libraries and other files
needed for the execution of the program running inside of the container. Of-
ten the container runs with a network interface so that the container can be
exposed to the world in the same way as a virtual machine. Typically, con-

22



tainers are designed to run a single application and are specified only for this
application. Containers can be generated by specific definition files and are
saved in just one image file.
There are different container solutions such as Docker [Mer14], CharlieCloud

[Sec], Shifter [NER] and Singularity [Inc]. The most popular container solution
is Docker. Docker is the industry standard for micro-service virtualization, but
it initially did not meet the requirements for a scientific working environment.
Docker uses Linux namespaces in combination with cgroups. Cgroups limit the
resources the container can use, which means one container can only see their
designated resources. To execute and build these containers the user had to be
a root user. Therefore, when working in an HPC environment Docker does not
meet the security requirements. On a shared system, such as a HPC system, if
any user is able to run any code it would be strictly against all security guide-
lines. With the new Docker update 20.10 Docker container are able to run in
an so called ”rootless” mode due to a new cgroups version. CharlieCloud [Sec]
is an open-source user defined softwarestack. The goal is to make Docker con-
tainer runable on HPC systems, which means to make them runable without
root privileges. The main issue with this approach is the compatibility. The
software makes use of kernel namespaces that are not deemed stable by multi-
ple prominent distributions of Linux such as RedHat and therefore are not able
to run on these operating systems. Shifter is also a service that works with
Docker containers and modifies the container to make them runable without
root privileges with the goal to have a Docker container run on a HPC sys-
tem. Shifter uses a different strategie than CharlieCloud. The disadvantage of
Shifter is that it requires a complex administrative setup. Singularity is con-
tainer solution that specializes to the needs of scientific workflows and HPC.
The architecture of Singularity allows users to safely run containers on a HPC
cluster system without the possibility of root privilege escalation. Singularity
runs on the target system Jureca.
Generally, containers are the more portable virtualization approach com-

pared to a virtual machine which is due to the fact that images of virtual
machines oftentimes a lot bigger in size, because the kernel has to be emulated
as well. In the HPC domain, containers are typically preferred over virtual
machines because of the overhead virtual machines come with both regarding
disk space and performance. Therefore in this thesis, a container is chosen as
the tool to virtualize the application with the container solution Singularity.

23



4.2. Singularity
Singularity [Inc] as described befor is a container solution to create the ne-
cessities for scientific application driven workloads. The goals of Singularity
are:

• Mobility of computing - With a singularity container a workflow
can be executed on different hosts, Linux operating systems, and cloud
providers while containing the entire software stack.

• Reproducibility - Once a workflow is working the container can be
saved so that the user can later come back to it and reproduce the re-
sults. This is important in the scientific community as well so that when
publishing a paper for example an author can use a Singularity container
for others to verify the results.

• User freedom - The user can install applications, versions, and depen-
dencies for their projects without being dependent on a host system,
that could have a different environment. The container can be copied to
most host systems and the user can run their project inside the container
without having to look if packages are installed or the right version is
available.

• Support on existing traditional HPC resources - The goal is to
support HPC environments. Singularity supports technologies such as
Infiniband and at the same time integrating with resource managers like
SLURM.

Singularity containers are made up of a single file also called the Singularity
image file (.sif). A .sif file can be generated in multiple ways. The easi-
est way is to just pull a container from an image library such as the official
Singularity library or the Docker library [Mer14]. The more common way is
to build an image file from a build file. A build file consists of different parts.
Not all of these parts have to be included in a build file. Following the parts
will shortly be introduced:

• Header - The header configures the base image used for the container
which will be an operating system in most situations, but could as well
be a simple executable or library. Two keywords are essential for the
header: ”Bootstrap” determines the bootstrap agent that will be used to
create the base operating system, ”From” is the named container that is
used as a base image. More specific information can be given as well. A
base image can also be a Docker image [Mer14]. A header has always to
be included.

24



• Help - The text in this section can be displayed when running the
singularity run-help <container image> command.

• Setup - The setup section is executed first. It is executed on the host
system outside of the container after the base OS has been installed.
Commands in this section can alter the host. Therefore it is not recom-
mended to use this section.

• Files - In this section, files from the host system can be copied into the
Singularity file system. The path of the file to copy has to be valid on
the host as well as the path to where to copy it inside the container.
This provides more safety than the setup section because files can only
be copied but not altered.

• Labels - The labels section can be used to add metadata. The metadata
will be added to the file ”/.singularity.d/labels.json” within the container.
The metadata has to be given in a name-value pair. An example could be
name ”Author” with a value ”name”. The metadata can be displayed by
running singularity inspect <container image>. Some labels are
also automatically inserted from the build process.

• Environment - In the environment section environment variables can
be defined. These variables will be set at run time, not at build time.
For the environment variables to be available during build the variables
need to be defined in the post section as well. The script is also setting
an environment variable at build time.

• Post - In this section, files can be downloaded, software and library
installed, directories created, configuration files written and environment
variables can be set during the build time. The commands that can be
used here are dependent on the base image.

• Runscript - The commands written in the run script section are written
into a file within the container that is executed when the container im-
age is run by singularity run <container image>. By running this
command arguments can be passed to the runscript as well.

• Startscript - Like the runscript section, the contents of the startscript
section are written to a file within the container at build time. This file is
executed when the command singularity instance start <container
image> <instance to start> is issued.

An image file can be built in two different ways. The native way is by execut-
ing ”sudo singularity build <image file> <definition file>”. You need
root privileges to build an image file. The second way is to build a so-called
”sandbox directory”. A sandbox directory is a writable directory that can

25



be transformed into an image file later. The advantage is that the result-
ing directory operates just like a container in a .sif file, you only need root
privileges to transform the directory into an image file, but not to build the
sandbox container and you can make changes inside the sandbox directory. A
sandbox directory can be build by executing ”singularity build –sandbox
<sandbox directory> <definition file>”.
Singularity can be run in the foreground and the background. Running

in the foreground there are different ways to do so. The shell command al-
lows you to spawn a shell inside your container. This can be executed by
”singularity shell <image file>”. By executing this the prompt in the
shell should change. In this shell commands can be executed. The image
can be interacted with like a virtual machine. Another way is to execute a
specific command inside the container by ”singularity exec <image file>
<command>”. Files on the host are reachable from within the container for both
commands. The third option is executing the run scripts inside the container
by ”singularity run <image file>”. Running a file in the background is
also called detached mode. Detached containers are persistent and can be
started multiple times simultaneously, while each of these containers is called
a container instance. Instances are fully isolated from each other and can be
addressed individually. Running containers like this in the background is es-
pecially suited for services like web servers that multiple clients are supposed
to use and will not be used in this thesis.

4.3. Example: Singularity container for Julia and
OpenMPI

In this case, a Singularity container is needed in which a Julia code can be
executed and the Julia MPI package can be used. In the following, some
subsections of the definition file are introduced. The whole definition file can
be found in the appendix. This specific definition file is for a container which
runs on Julia 1.3.1 and Open MPI 4.0.2 [Gab+04]. The introduced approach
here for working with MPI in a Singularity Container is the hybrid model. The
Singularity container in this approach works with MPI from inside and outside
the container. The two MPI containers have to be compatible. By calling
mpirun to execute the container the MPI process outside of the container
will work together with the MPI inside the container to run the code. The
advantage of the hybrid approach is that it is easy to use because it is similar to
the way of natively running the code. The disadvantage of this approach is that
the MPI versions of the host and the container must be compatible and that
the MPI implementation in the container must be configured for optimal use of
the hardware if performance is critical. The other approach is called the bind
approach. Here the container does not include an MPI implementation, which

26



means that Singularity needs to bind the MPI version available on the host
into the container. The advantage here is that the container image is smaller
and there is no need to configure the MPI implementation. For this approach
to work, the user has to know where MPI is installed on the host system and
that binding is possible. The reason the approach is not used here has to do
with the Julia MPI package. During the building of the container, the MPI
package in Julia is built as explained before. Without a MPI implementation
in the container but only a link where MPI will be, the package cannot be
built. Therefore this approach can not be used here.

Listing 4.1: Header of the definition file
1 BootStrap: docker
From: bitnami/minideb:jessie

In listing 4.1 the header of the definition file is shown. In this case from
docker hub, a minimalist Debian-based image built specifically to be used as
a base image called ”jessie” is chosen. It is chosen, because this base image
is small, but has many packages available for easy integration. It is based
on ”glibc” for wide compatibility and has apt for access to a large number
of packages. Glibc stands for GNU C Library project and provides the core
libraries for GNU/Linux systems.

Listing 4.2: Environment of the definition file of the Julia Open MPI container
%environment

# Set env variables so we can compile our
application for Julia

3 export JULIA_DEPOT_PATH=$PWD/containerhome /.julia
:/user/.julia

export PATH=/opt/julia/bin:$PATH
export HOME=/user

# Set env variables so we can compile our
application for OpenMPI

8 export OMPI_DIR =/opt/ompi
export SINGULARITY_OMPI_DIR=$OMPI_DIR
export SINGULARITYENV_APPEND_PATH=$OMPI_DIR/bin
export SINGULAIRTYENV_APPEND_LD_LIBRARY_PATH=

$OMPI_DIR/lib

13 export PATH=$OMPI_DIR/bin:$PATH
export LD_LIBRARY_PATH=$OMPI_DIR/lib:

$LD_LIBRARY_PATH
export MANPATH=$OMPI_DIR/share/man:$MANPATH

27



In listing 4.2 the environment variables are set for Julia and Open MPI. The
environment variables set here are used during executing the container and not
during building the container.
After that in the ”post”-section first the needed packages are installed, Julia

is downloaded and then unzipped. Listing 4.3 shows how first the environment
variables are exported than needed packages for the Julia installation are in-
stalled. After that the needed Julia version (here 1.3.1) is downloaded from
the official Julia source, unzipped and moved to the target destination.

Listing 4.3: Installation of Julia into the container
%post

#Configurations for Julia
3

mkdir -p /user
export HOME=/user
export JULIA_DEPOT_PATH =/user/. julia
export PATH=/opt/julia/bin:$PATH

8
JULIA_MAJOR =1.3
JULIA_MINOR =.1

install_packages curl tar gzip openssh -client git
ca -certificates

13
curl -k https :// julialang -s3.julialang.org/bin/

linux/x64/$JULIA_MAJOR/julia -
$JULIA_MAJOR$JULIA_MINOR -linux -x86_64.tar.gz >
julia.tar.gz

mkdir /opt/julia
tar xzf julia.tar.gz -C /opt/julia
rm julia.tar.gz

18 mv /opt/julia/$(cd /opt/julia; echo julia -*)/*
opt/julia/

Also in the post-section, the installation of Open MPI 4.0.2 [Gab+04] is
done. First, the required packages are installed, then the environment variables
needed for the installation are set. Next, Open MPI 4.0.1 is downloaded from
the source. After that, the package is unzipped, compiled, configured, and
installed.
In listing 4.4 it is shown how Open MPI is integrated with Julia. This is

done with the help of the MPI-package in Julia [Lan]. First, the MPI Julia
package is downloaded with the help of the Julia package manager. Here the

28



Listing 4.4: Installation of Open MPI into the Container
apt -get update && apt -get install -y wget git

bash gcc gfortran g++ make file

export OMPI_DIR =/opt/ompi
4 export OMPI_VERSION =4.0.2

export OMPI_URL="https :// download.open -mpi.org/
release/open -mpi/v4.0/ openmpi -$OMPI_VERSION.tar
.gz"

mkdir -p /tmp/ompi
mkdir -p /opt

9 cd /tmp/ompi
wget -O openmpi -$OMPI_VERSION.tar.gz https ://

download.open -mpi.org/release/open -mpi/v4.0/
openmpi -4.0.2. tar.gz

tar xfvz openmpi -$OMPI_VERSION.tar.gz
# Compile and install
cd /tmp/ompi/openmpi -$OMPI_VERSION && ./ configure

--prefix=$OMPI_DIR && make install

specific version 0.15.1 is downloaded. In the next step, the Package is built
with the given installed MPI version.
Required packages for running the Julia code can be added with the package

manager like shown in listing 4.5. In this example the package ”ArgParse” is
added in version 1.1.0. ArgParse is a package for managing input with flags
over the terminal.
The container can be executed by calling mpirun –np <number of procs>

singularity exec <container image> julia <code to run>.

29



Listing 4.5: Binding MPI into Julia
# Combine MPI and Julia here

3 export CC=‘which mpicc ‘
export FC=‘which mpif90 ‘
julia -e ’using Pkg; Pkg.add(PackageSpec(name="

MPI", version="0.15.1"));’
julia --project -e ’ENV["JULIA_MPI_BINARY"]="

system"; using Pkg; Pkg.build("MPI"; verbose=
true)’

Listing 4.6: Building of Julia packages
julia -e ’using Pkg; Pkg.add(PackageSpec(name="

ArgParse", version="1.1.0"));’

30



5. Testing with Singularity
In this chapter the impact of the container on the runtime of the application
is tested. In the following, timing tests for the test cases proposed in chapter
3 are presented. Then the portability to other host systems is tested. After,
that working with another MPI version than Open MPI is presented.

5.1. Singularity on Jureca
Jureca is a modular supercomputer which is located at Jülich Supercomputing
Centre[Jül16]. The supercomputer Jureca was introduced in 3.1. Used for
computation with and without a container Julia 1.3.1, Open MPI 4.0.1, Julia-
MPI v0.15.1 are used. The container is built with Singularity version 3.5.2
and executed with Singularity version 3.6.4-1.el7. For all runs, the number
of BLAS threads used is 1. BLAS threads were introduced in chapter 3.1.
Runtimes can differ from chapter 3 because another MPI version is used and
the number of BLAS threads is set. This topic is explained in chapter 3.1.
The definition file of the container used here can be seen in the appendix.

Figure 5.1.: Run time in seconds of the Lorenz equation run on Jureca with
Open MPI comparing a native run and a run with a container

Figure 5.1 shows the run time of the Lorenz example, which is introduced
in chapter 3.2. It shows the run time in seconds plotted against the number

31



of cores used on one node. The use of Singularity is compared for a different
number of time steps nc. The run time in this example is fairly small, so all
runs were performed ten times and the average run time was taken here. It can
be seen that the run time with the container for every number of time steps
is bigger than the native run without the container. This means the overhead
here is up to 15625%. This could be due to the small run time.
Figure 5.2 shows the run time of the heat equation. The heat equation is

introduced in chapter 3.3. Figure 5.2 shows the run time in seconds plotted
against the number of cores used on one node. The use of singularity is com-
pared for a different number of time steps nc for nx = 256, nf = 10 and IMEX
Euler as integrator. The run time in this example is smaller than in figure 3.6.
In this plot it can be seen that the more time steps are used, the more run
time is needed to calculate. Until 16 cores the run time goes down for every
number of time steps. For 32 cores the run time is worse than for 16 cores.
For 32 cores hyperthreading is used. This can lead to a higher runtime. By
using a container in this example the run time is slightly bigger than without.
This leads to an overhead up to 31%. Especially until 16 cores the run time is
nearly the same. For 32 cores there is a bigger difference between the usage of
Singularity and the native run, which could be explained by hyperthreading
as well.
Figure 5.3 shows the run time of the Allen-Cahn equation, which is intro-

duced in chapter 3.4. It shows the run time in seconds plotted against the
number of cores used on one node. The use of singularity is compared for a
different number of timesteps nc for nx = 128, nf = 10 and IMEX Euler as
integrator. Compared to figure 3.9 the run time is a little bit better for the
native run. In this plot it can be seen that the more time steps are used, the

Figure 5.2.: Run time in seconds of the heat equation run on Jureca with Open
MPI comparing a native run and a run with a container

32



Figure 5.3.: Run time in seconds of the Allen-Cahn equation run on Jureca
with Open MPI comparing a native run and a run with a container

more run time is needed to calculate. The minimal run time for every number
of time steps shows when 16 cores are used on one core. For 32 cores the run
time is nearly the same as 16 cores. For 32 cores hyperthreading is used, but
the runtime does not get bigger. This could be because the number of itera-
tions in total is smaller. By using a container in this example the run time is
nearly the same until 16 cores. For 32 cores there is a bigger difference, which
can be explained by hyperthreading as well. This leads to an overhead up to
9%.

Figure 5.4.: Run time in seconds of the Allen-Cahn equation run on Jureca on
multiple nodes with Open MPI comparing a native run and a run
with a container

33



Until now only one node was used and the overhead was small. That means
intra-node communication was tested. Another test case would be inter-node
communication, which means the communication between the nodes. In figure
5.4 the use of Singularity is compared for different number of time steps nc
for nx = 128, nf = 10 and IMEX Euler as integrator. The more nodes
are used, the smaller the run time is. Nevertheless it can additionally be
observed that the more nodes are used the bigger the overhead gets for using
a container. This leads to an overhead up to 16%. This could be explained
because the container tested here works with the hybrid approach, which was
introduced in chapter 4.3. The hybrid approach works inside the container
with the downloaded Open MPI. The configuration of Open MPI inside the
container is most likely not the same as on Jureca, which can lead to a slower
run time with the singularity container.

5.2. Portability to other hosts
One of the advantages of working with singularity containers is their high
portability. Tests on Jureca showed that the container can be run without
a severe overhead. Therefore the application should be able to run on other
hosts as well.
Jusuf [JSC] is the an other supercomputer available at Jülich Supercomput-

ing Centre. One node on which the calculation could be done has two AMD
EPYC 7742 with 64 cores each. The nodes are connected with Mellanox In-
finiBand HDR 100 and the topology of the nodes is a full fat-tree network.
The current software stage on Jusuf has Open MPI not installed. A native run
of the application on Jusuf is not possible, because the Julia version available
in the current software stage is not compatible with the code and the Julia
version needed, which is available on the software stage ”Devel-2019” is not
able to execute the application due to issues with MPI.
The software stage 2020 has an Open MPI installation. Open MPI 4.1.0rc1

is used in this case. A container was build with this version, but due to other
errors the container could not run. The same problem occurs with the Intel
MPI container. A serial run with Julia is possible. This shows, that this
container is dependent on the outside MPI and the container with MPI can
only be run successfully if it is compatible with the MPI version outside of the
container. The software stage ”Devel-2019” has an OpenMPI 4.0.2 installation.
This installation was used for the tests on Jureca and is here used for the tests
on Jusuf. The same container is used for run time tests.
Figure 5.5 shows the run time of the Allen-Cahn equation. The Allen-Cahn

equation is introduced in chapter 3.4. Figure 5.3 shows the run time in seconds
plotted against the number of cores used on one node. The use of Singularity
is compared for a different number of timesteps nc for nx = 128, nf = 10

34



Figure 5.5.: Run time in seconds of the Allen-Cahn equation run on Jusuf
with Open MPI compared to the runtime on Jureca run with a
container

and IMEX-Euler as integrator. In this plot, the run time on Jusuf in green
and Jureca in blue are compared. The run time of the container on Jureca
was discussed in 5.1. The run time on Jusuf compared to the run time on
Jureca is smaller. It can be seen that on Jusuf the more processors are used
the smaller the time gets. In comparison to Jureca Jusuf has two processors
with 64 cores each. No hyperthreading is needed to run with 32 cores on Jusuf
like on Jureca. This concludes with a better run time and speedup on Jusuf
for 32 cores.
A rather different host would be a cloud system. Clouds have become more

popular these days and can run HPC applications as well. The advantage
is that the user can specifically choose its own configurations of hardware,
operating system, scheduler and software. Also, working on HPC systems can
lead to long waiting times until the application can run, because of the Job
scheduler. Cloud systems try to solve this problem. The disadvantage is that
to start working with a cloud system you need time to understand how it works
and what is possible. For this test case, Amazon Web Services (AWS) [Amaa]
is chosen as the cloud computing platform. AWS is one of the largest cloud
computing providers in the world. AWS has a lot of services and resources
available to its users. The goal is to show that the container build for Jureca
with Open MPI and Julia can run in the cloud as well. To properly run the
HPC application on AWS the user would have to create a cluster on which
the HPC application could run. AWS provides tools for that like StarCluster,
CycleCloud or AWS Parallel Cluster. To test, if the Singularity container could
run on AWS it is sufficient to create a virtual machine to run in. The cluster on
which the virtual machine should run is the Elastic Cluster 2, also called EC2

35



[Amab]. The hardware instance chosen to run the virtual machine is called
C5. C5 features custom 2nd generation Intel Xeon Scalable Processors with a
sustained all-core turbo frequency of 3.6GHz and a maximum single-core turbo
frequency of 3.9GHz. One processor consists of two cores. C5 instances are
chosen because they are made to run advanced compute-intensive workloads
at a low price. The C5 instance chosen costs $0.085 per Hour for example.
THe costs are charged exactly to the second used. As an operating system,
Ubuntu 18.04 was chosen. For this virtual machine, only 2 cores were used.
This is due to the fact that for working with more cores another processor
would have to be used. To accomplish running multiple processors a virtual
cluster has to be created. To run the container Singularity and Open MPI had
to be installed inside the virtual machine. The container was able to run the
application on the virtual machine.
A comparison of the run time of the different host systems is done in table

5.1. The Allen-Cahn equation with Parareal and IMEX Euler as the integrator,
nc = 128 and nf = 10 was used here to make the comparison. The run time
was tested for nx = 128 and nx = 256 for the host systems discussed before.

nx = 128 nx = 256
Jureca native 36.09 70.94

Jureca 35.32 70.36
Jusuf 26.2 52.88
AWS 35.63 68.68

Table 5.1.: Runtime in seconds of the Allen-Cahn equation with Parareal and
IMEX Euler as integrator, nc = 128 and nf = 10 compared for
different hosts

It can be seen that the shortest run time can be reached when running the
container on Jusuf. It can be seen that with doubling the number of steps in
the time domain nc the run time doubles as well.

5.3. Singularity with a different MPI version
Open MPI is not the only MPI implementation. Others existing are Paras-
tation MPI [MPIa], MPICH [MPIb] and Intel MPI [Int]. Parastation MPI is
not compatible with Julia [Lan], so it couldn’t be used here. MPICH is not
installed on Jureca so it could not be used either. Intel MPI has an installation
on Jureca and is compatible with Julia. It was also used in chapter 3 to test
the applications. The build script of the Intel MPI Singularity container for a
Julia MPI application can be seen in the appendix. The build script is more
complex in this case than for Open MPI. The main difference between the
build script presented in 4.3 and the one used for the Intel MPI container is

36



that the base image, in this case, is the latest Ubuntu image, the environment
variables have to be adapted and instead of downloading the Intel MPI inside
the container the compressed Intel MPI directory is downloaded outside of the
container and only copied into the container. Also as shown in listing 5.1 the
installation of Intel MPI has to be a silent installation. After the installation
of the mpivars.sh, script has to be executed to set the environment variables.
This line has to be included in the environment section as well.

Listing 5.1: Specifications of the container with Intel MPI
./ install.sh --silent silent.cfg --accept_eula

3 . /opt/intel/compilers_and_libraries_2020/linux/
mpi/intel64/bin/mpivars.sh

Figure 5.6.: Run time in seconds of the Allen-Cahn equation run on Jureca
with Intel MPI comparing a native run and a run with a container

Figure 5.6 shows the run time of the Allen-Cahn equation with Intel MPI.
The figure shows the run time in seconds plotted against the number of cores
used on one node. The use of singularity is compared for different number of
time steps nc for nx = 128, nf = 10 and IMEX Euler as integrator. Compared
to figure 5.3 the run time is better and the run time of the singularity container
is closer to the native run time. The overhead here is only up to 4%.
Figure 5.7 shows the run time of the Allen-Cahn equation against the number

of cores used. Here 1, 2 and 4 nodes are used with 16 cores each. This tests if
there is an overhead when using inter-node communication for Intel MPI. The
run time of the container run and the native run is nearly the same. Only an
overhead of up to 1% can be seen here.
In figure 5.8 Open MPI and Intel MPI are compared as a native run and a

containerized run. This figure combines figure 5.4 and figure 5.7. The figure

37



Figure 5.7.: Run time in seconds of the Allen-Cahn equation run on Jureca on
multiple nodes with Intel MPI comparing a native run and a run
with a container

Figure 5.8.: Run time in seconds of the Allen-Cahn equation run on Jureca
on multiple nodes comparing Open MPI and Intel MPI as well a
native run and a run with a container

shows the run time of the Allen-Cahn equation against the number of cores
used for 1, 2 and 4 nodes and 16 cores per node. It can be seen that for each
coarse step size nc the Singularity container with Open MPI has the slowest
run time. On the other side, the Singularity container with Intel MPI has
nearly the same run time as both native versions. This means that the Intel
MPI Singularity container for a Julia MPI application on Jureca can be run
without any overhead.

38



6. Summary and outlook
In this work, Parareal was implemented using Julia and MPI. First Parareal
was introduced and the parallelization strategy was presented. In chapter 3 it
was shown that the algorithm can be applied to the Lorenz equation, the heat
equation, and the Allen-Cahn equation. It was shown that Parareal converges
for each of the test cases with a decent number of iteration steps. The speedup
of the algorithm is not ideal for the setting presented in chapter 3. After that
containerization was introduced with a focus on Singularity and how to build
and execute Singularity containers. A container for Julia 1.3.1 with Open MPI
was further discussed in 4.3. This container is built with the hybrid approach
which is introduced in chapter 4.3. This container runs on Jureca. For each
of the test cases run time tests were done. It can be concluded that for the
Lorenz equation the run time was too small to get decent results with the
Singularity container. The run time for the heat equation and the Allen-Cahn
equation with the container was, on one node, nearly the same as without a
container. So there was nearly no overhead. For the Allen-Cahn test case, the
performance for more nodes was tested as well. The more nodes are taken,
the larger the overhead is. The best performance was reached if the number
of BLAS threads is 1. The portability of the container was shown in chapter
5.2. The container could be ported onto a cloud-based host as well as the
supercomputer Jusuf. The portation to Jusuf was not as easy due to the fact
that the currant software stage did not have the required version of MPI. By
using an other software stage running the container on Jusuf could be reached.
This shows that the container for our application is dependent on the MPI
version used on the host system and therefore the portability is limited. It was
possible to run a container with another MPI version named Intel MPI as well.
The results of running Intel MPI on Jureca were better than running Open
MPI. Especially when doing using more than one node the Intel container had
no overhead compared to the Open MPI container. This was discussed in more
detail in chapter 5.3.
Altogether it can be said that the goal of this work to have a working

Parareal algorithm written in Julia that runs on the Supercomputer Jureca
inside a Singularity container could be reached. The implementation on the
other hand is not adjustable for different problems and integrators. This is
due to the problem that using the ”DifferentialEquation.jl” package was not
possible like shown in chapter 3.1. By using a singularity container on Jureca
the usual workflow by loading the provided modules could be bypassed for

39



Julia. MPI still had to be loaded and the MPI version loaded had to be
compatible with the MPI version inside the container. Working with Julia
there had to be a MPI version inside the container during the building of the
container. This could lead to performance issues as shown in chapter 5.1. It
would be more convenient to bind the MPI version available on the host system
into the container. Further topics that can be explored are the following:
HPC on a Cloudsystem - Cloud computing was introduced in 5.2. It was
shown that the singularity container for the application runs on the AWS
cloud. Running an own cluster in the cloud was shortly introduced but not
tested. It would be interesting to see how well the cluster performs compared
to Jureca for example and if it can be used as an alternative or an addition to
HPC computing.
Variation in solver and stepsize - It would be interesting to see how well
Parareal performs when a different solver as the fine solver is chosen. For
example a Runge-Kutta method with a different order for the Lorenz system
or a higher-order solver for the heat equation like SBDF2. It would also be
interesting to look at the changes in the error, iterations, and timings for a
changed nf .

40



A. Appendix

A.1. Singularity Definition File
These buildscrips build a image for my private computer and can differ on
other hostsystems.
OpenMPI:

Listing A.1: Definition file Open MPI
BootStrap: docker
From: bitnami/minideb:jessie

%files
5 # add your files here

%environment
# Set env variables so we can compile our

application for Julia
10 export JULIA_DEPOT_PATH=$PWD/containerhome /.julia

:/user/.julia
export PATH=/opt/julia/bin:$PATH
export HOME=/user

# Set env variables so we can compile our
application for OpenMPI

15 export OMPI_DIR =/opt/ompi
export SINGULARITY_OMPI_DIR=$OMPI_DIR
export SINGULARITYENV_APPEND_PATH=$OMPI_DIR/bin
export SINGULAIRTYENV_APPEND_LD_LIBRARY_PATH=

$OMPI_DIR/lib

20 export PATH=$OMPI_DIR/bin:$PATH
export LD_LIBRARY_PATH=$OMPI_DIR/lib:

$LD_LIBRARY_PATH
export MANPATH=$OMPI_DIR/share/man:$MANPATH

%post

41



25 #Configurations for Julia

mkdir -p /user
export HOME=/user
export JULIA_DEPOT_PATH =/user/. julia

30 export PATH=/opt/julia/bin:$PATH

JULIA_MAJOR =1.3
JULIA_MINOR =.1

35 install_packages curl tar gzip openssh -client git
ca -certificates

curl -k https :// julialang -s3.julialang.org/bin/
linux/x64/$JULIA_MAJOR/julia -
$JULIA_MAJOR$JULIA_MINOR -linux -x86_64.tar.gz >
julia.tar.gz

mkdir /opt/julia
tar xzf julia.tar.gz -C /opt/julia

40 rm julia.tar.gz
mv /opt/julia/$(cd /opt/julia; echo julia -*)/*

opt/julia/
rm -rf /opt/julia/$(cd /opt/julia; echo julia -*)

rm -rf /opt/julia/share/doc
45 rm -rf /opt/julia/share/icons

rm -rf /opt/julia/share/appdata
rm -rf /opt/julia/share/applications
rm -rf /opt/julia/share/man
rm -rf /opt/julia/share/julia/test

50 rm /opt/julia/LICENSE.md
rm -rf /opt/julia/etc
rm -rf /opt/julia/include

mkdir -p /user/. julia/environments/$JULIA_MAJOR
55

# Configurations for OpenMPI

cd

60 apt -get update && apt -get install -y wget git
bash gcc gfortran g++ make file

42



export OMPI_DIR =/opt/ompi
export OMPI_VERSION =4.0.2
export OMPI_URL="https :// download.open -mpi.org/

release/open -mpi/v4.0/ openmpi -$OMPI_VERSION.tar
.gz"

65 mkdir -p /tmp/ompi
mkdir -p /opt

cd /tmp/ompi
wget -O openmpi -$OMPI_VERSION.tar.gz https ://

download.open -mpi.org/release/open -mpi/v4.0/
openmpi -4.0.2. tar.gz

70 tar xfvz openmpi -$OMPI_VERSION.tar.gz
# Compile and install
cd /tmp/ompi/openmpi -$OMPI_VERSION && ./ configure

--prefix=$OMPI_DIR && make install
# Set env variables so we can compile our

application
export PATH=$OMPI_DIR/bin:$PATH

75 export LD_LIBRARY_PATH=$OMPI_DIR/lib:
$LD_LIBRARY_PATH

export MANPATH=$OMPI_DIR/share/man:$MANPATH

#JULIA

80 # Put in your Julia Specifications here for
packages

julia -e ’using Pkg; Pkg.add(PackageSpec(name="
ArgParse", version="1.1.0"));’

julia -e ’using Pkg; Pkg.add(PackageSpec(name="
CSV", version="0.7.7"));’

julia -e ’using Pkg; Pkg.add(PackageSpec(name="
DataFrames", version="0.21.7"));’

85 julia -e ’using Pkg; Pkg.add("LinearAlgebra");’
julia -e ’using Pkg; Pkg.add("Profile");’
julia -e ’using Pkg; Pkg.add("Statistics");’

# Combine MPI and Julia here
90

export CC=‘which mpicc ‘
export FC=‘which mpif90 ‘
julia -e ’using Pkg; Pkg.add(PackageSpec(name="

43



MPI", version="0.15.1"));’
julia --project -e ’ENV["JULIA_MPI_BINARY"]="

system"; using Pkg; Pkg.build("MPI"; verbose=
true)’

95
# Maybe make your files runable with: chmod 774 /

opt/parareal_imex_ac.jl

IntelMPI:

Listing A.2: Definition file Intel MPI
Bootstrap:docker
From:ubuntu:latest

3
%files

./ l_mpi_2019 .9.304. tgz /opt

../ parareal -julia/src/parareal_imex_ac.jl /opt

../ parareal -julia/src/parareal_imex_heq.jl /opt
8 ../ parareal -julia/src/lorenz_euler.jl /opt

%environment
# add local directory for precompile files
export JULIA_DEPOT_PATH=$PWD/containerhome /.julia

:/user/.julia
13 export PATH=/opt/julia/bin:$PATH

export HOME=/user

#MPI
export PATH=/opt/intel/

compilers_and_libraries_2020/linux/mpi/intel64/
bin:$PATH

18 export LD_LIBRARY_PATH =/opt/intel/bin/
compilers_and_libraries_2020/linux/mpi/intel64/
lib:$LD_LIBRARY_PATH

. /opt/intel/compilers_and_libraries_2020/linux/
mpi/intel64/bin/mpivars.sh

23 %post
#JUlia

mkdir -p /user
export HOME=/user
export JULIA_DEPOT_PATH =/user/. julia

44



28 export PATH=/opt/julia/bin:$PATH

JULIA_MAJOR =1.3
JULIA_MINOR =.1
# could also be .0

33
# minideb specific install script , shaves off

about 20mb compared to apt -get
apt -get update && apt -get install -y curl tar

gzip openssh -client git ca-certificates

curl -k https :// julialang -s3.julialang.org/bin/
linux/x64/$JULIA_MAJOR/julia -
$JULIA_MAJOR$JULIA_MINOR -linux -x86_64.tar.gz >
julia.tar.gz

38 mkdir /opt/julia
tar xzf julia.tar.gz -C /opt/julia
rm julia.tar.gz
mv /opt/julia/$(cd /opt/julia; echo julia -*)/*

opt/julia/
rm -rf /opt/julia/$(cd /opt/julia; echo julia -*)

43
rm -rf /opt/julia/share/doc
rm -rf /opt/julia/share/icons
rm -rf /opt/julia/share/appdata
rm -rf /opt/julia/share/applications

48 rm -rf /opt/julia/share/man
rm -rf /opt/julia/share/julia/test
rm /opt/julia/LICENSE.md
rm -rf /opt/julia/etc
rm -rf /opt/julia/include

53
mkdir -p /user/. julia/environments/$JULIA_MAJOR

#mpi
cd

58
apt -get update && apt -get install -y wget git

bash gcc gfortran g++ make file cpio

cd ../ opt
ls -ll

63 pwd

45



cp l_mpi_2019 .9.304. tgz /tmp
cd /tmp
tar -xzf l_mpi_2019 .9.304. tgz

68
cd l_mpi_2019 .9.304
ls -ll
#cp <license key >.lic ../
cat silent.cfg

73 ./ install.sh --silent silent.cfg --accept_eula

. /opt/intel/compilers_and_libraries_2020/linux/
mpi/intel64/bin/mpivars.sh

# Set env variables so we can compile our
application

78 #export PATH=$OMPI_DIR/bin:$PATH
#export LD_LIBRARY_PATH=$OMPI_DIR/lib:

$LD_LIBRARY_PATH
#export MANPATH=$OMPI_DIR/share/man:$MANPATH

export CC=‘which mpicc ‘
83 export FC=‘which mpif90 ‘

#JULIA

88

julia -e ’using Pkg; Pkg.add(PackageSpec(name="
ArgParse", version="1.1.0"));’

julia -e ’using Pkg; Pkg.add(PackageSpec(name="
CSV", version="0.7.7"));’

93 julia -e ’using Pkg; Pkg.add(PackageSpec(name="
DataFrames", version="0.21.7"));’

julia -e ’using Pkg; Pkg.add("LinearAlgebra");’
julia -e ’using Pkg; Pkg.add("Profile");’
julia -e ’using Pkg; Pkg.add("Statistics");’
julia -e ’using Pkg; Pkg.add(PackageSpec(name="

MPI", version="0.15.1"));’
98

julia --project -e ’ENV["JULIA_MPI_BINARY"]="

46



system"; using Pkg; Pkg.build("MPI"; verbose=
true)’

# mkdir -p /opt/. julia/environments/v1.3/

103 # julia -e ’using Pkg; Pkg.status ()’

chmod 774 /opt/parareal_imex_ac.jl
chmod 774 /opt/parareal_imex_heq.jl
chmod 774 /opt/lorenz_euler.jl

47



Bibliography
[20] Anaconda Software Distribution. Version Vers. 2-2.4.0. 2020. url:

https://docs.anaconda.com/.
[AC79] Samuel M. Allen and John W. Cahn. “A microscopic theory for

antiphase boundary motion and its application to antiphase do-
main coarsening”. In: Acta Metallurgica 27.6 (1979), pp. 1085–
1095. issn: 0001-6160. doi: https://doi.org/10.1016/0001-
6160(79 ) 90196 - 2. url: http : / / www . sciencedirect . com /
science/article/pii/0001616079901962.

[Amaa] Inc. Amazon Web Services. AWS. url: https : / / docs . aws .
amazon.com/ (visited on 12/08/2020).

[Amab] Inc. Amazon Web Services. EC2. url: https : / / docs . aws .
amazon.com/ec2/index.html (visited on 12/08/2020).

[Bau+14] A.-M. Baudron et al. “The Parareal in Time Algorithm Applied to
the Kinetic Neutron Diffusion Equation”. In: Domain Decomposi-
tion Methods in Science and Engineering XXI. Cham: Springer In-
ternational Publishing, 2014, pp. 437–445. isbn: 978-3-319-05789-
7.

[Bez+14] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Com-
puting”. In: CoRR abs/1411.1607 (2014).

[Bla+02] L Susan Blackford et al. “An updated set of basic linear algebra
subprograms (BLAS)”. In: ACM Transactions on Mathematical
Software 28.2 (2002), pp. 135–151.

[BZ89] Alfredo Bellen and Marino Zennaro. “Parallel algorithms for initial-
value problems for difference and differential equations”. In: 1989.

[Cla+19] Andrew T. Clarke et al. “Parallel-in-time integration of Kinematic
Dynamos”. arXiv:1902.00387 [physics.comp-ph]. 2019. url: https:
//arxiv.org/abs/1902.00387.

[CP93] Philippe Chartier and Bernard Philippe. “A parallel shooting tech-
nique for solving dissipative ODE’s”. In: Computing 51 (Aug. 1993),
pp. 209–236. doi: 10.1007/BF02238534.

48



[DPS05] Lisandro Dalcin, Rodrigo Paz, and Mario Storti. “MPI for Python”.
In: Journal of Parallel and Distributed Computing 65.9 (2005),
pp. 1108–1115. issn: 0743-7315. doi: http://dx.doi.org/10.
1016/j.jpdc.2005.03.010.

[Dyb09] R. Kent Dybvig. The Scheme Programming Language, 4th Edition.
4th. The MIT Press, 2009.

[Gab+04] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of
a Next Generation MPI Implementation”. In: Proceedings, 11th
European PVM/MPI Users’ Group Meeting. Budapest, Hungary,
2004, pp. 97–104.

[GH08] Martin Gander and Ernst Hairer. “Nonlinear Convergence Analy-
sis for the Parareal Algorithm”. In: vol. 60. Jan. 2008, pp. 45–56.
doi: 10.1007/978-3-540-75199-1_4.

[Git] GitHub. Atom. url: https://atom.io/ (visited on 07/20/2018).
[GT15] S. Kim G. Ariel and R. Tsai. Parareal methods for highly oscillatory

ordinarydifferential equations. 2015.
[GV07] Martin Gander and Stefan Vandewalle. “Analysis of the Parareal

Time-Parallel Time-Integration Method”. In: SIAM J. Scientific
Computing 29 (Jan. 2007), pp. 556–578. doi: 10.1137/05064607X.

[Inc] Sylabs Inc. Singularity. url: https://sylabs.io/guides/3.6/
user-guide/introduction.html (visited on 12/08/2020).

[Int] Intel. Intel MPI. url: https://software.intel.com/content/
www/us/en/develop/documentation/get-started-with-mpi-
for-linux/top.html (visited on 12/08/2020).

[JSC] JSC. Jusuf. url: https : / / fz - juelich . de / ias / jsc / EN /
Expertise/Supercomputers/JUSUF/Configuration/Configuration_
node.html (visited on 12/08/2020).

[Jül16] Jülich Supercomputing Centre. “JURECA: General-purpose su-
percomputer at Jülich Supercomputing Centre”. In: Journal of
large-scale research facilities 2.A62 (2016). doi: 10.17815/jlsrf-
2-121. url: http://dx.doi.org/10.17815/jlsrf-2-121.

[Jup] Project Jupyter. Jupyter. url: http://jupyter.org/ (visited on
12/12/2017).

[KR14] Rolf Krause and Daniel Ruprecht. “Hybrid Space–Time Parallel
Solution of Burgers’ Equation”. In: Domain Decomposition Meth-
ods in Science and Engineering XXI. Cham: Springer International
Publishing, 2014, pp. 647–655. isbn: 978-3-319-05789-7.

49



[KSB17] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Sin-
gularity: Scientific containers for mobility of compute”. In: PLOS
ONE 12.5 (May 2017), pp. 1–20. doi: 10.1371/journal.pone.
0177459. url: https://doi.org/10.1371/journal.pone.
0177459.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: Pro-
ceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization. CGO
’04. Palo Alto, California: IEEE Computer Society, 2004, pp. 75–.
isbn: 0-7695-2102-9. url: http://dl.acm.org/citation.cfm?
id=977395.977673.

[Lan] The Julia Language. Julia MPI. url: https://juliaparallel.
github.io/MPI.jl/stable/configuration/ (visited on 12/08/2020).

[LMT01] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. “Résolu-
tion d’EDP par un schéma en temps « pararéel »”. In: 2001.

[Mer14] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent
Development and Deployment”. In: Linux J. 2014.239 (Mar. 2014).
issn: 1075-3583.

[MPIa] Parastation MPI. Parastation MPI. url: https://docs.par-
tec.com/html/psmpi-userguide/index.html (visited on 12/08/2020).

[MPIb] MPICH. MPICH. url: https://www.mpich.org/ (visited on
12/08/2020).

[NER] NERSC. Shifter. url: https://github.com/NERSC/shifter
(visited on 12/08/2020).

[Nie64] Jürg Nievergelt. “Parallel methods for integrating ordinary differ-
ential equations”. In: Commun. ACM 7 (1964), pp. 731–733.

[Ora] Oracle. VirtualBox. url: https://www.virtualbox.org/manual/
ch01.html (visited on 12/08/2020).

[Pad11] “Message Passing Interface (MPI)”. In: Encyclopedia of Parallel
Computing. Ed. by David Padua. Boston, MA: Springer US, 2011,
pp. 1116–1116. isbn: 978-0-387-09766-4. doi: 10.1007/978-0-
387-09766-4_2085. url: https://doi.org/10.1007/978-0-
387-09766-4_2085.

[PyP] PyPa. Pip. url: https://pip.pypa.io/en/stable/ (visited on
12/08/2020).

[RN17] Christopher Rackauckas and Qing Nie. “Differentialequations. jl–a
performant and feature-rich ecosystem for solving differential equa-
tions in julia”. In: Journal of Open Research Software 5.1 (2017).

50



[RSK16] Daniel Ruprecht, Robert Speck, and Rolf Krause. “Parareal for Dif-
fusion Problems with Space- and Time-Dependent Coefficients”.
In: Domain Decomposition Methods in Science and Engineering
XXII (2016), pp. 371–378. issn: 2197-7100. doi: 10.1007/978-
3-319-18827-0_37. url: http://dx.doi.org/10.1007/978-3-
319-18827-0_37.

[Sec] Triad National Security. CharlieCloud. url: https://hpc.github.
io/charliecloud/ (visited on 12/08/2020).

[SR05] Gunnar Andreas Staff and Einar M. Ronquist. “Stability of the
Parareal Algorithm”. In: Domain Decomposition Methods in Sci-
ence and Engineering. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 449–456. isbn: 978-3-540-26825-3.

[SST97] Prasenjit Saha, Joachim Stadel, and Scott Tremaine. “A Parallel
Integration Method for Solar System Dynamics”. In: (1997).

[ZD09] Jian Zhang and Qiang Du. “Numerical studies of discrete approx-
imations to the Allen-Cahn equation in the sharp interface limit”.
In: SIAM (2009).

51


