000890368 001__ 890368
000890368 005__ 20240708133151.0
000890368 0247_ $$2doi$$a10.1016/j.fusengdes.2021.112272
000890368 0247_ $$2ISSN$$a0920-3796
000890368 0247_ $$2ISSN$$a1873-7196
000890368 0247_ $$2Handle$$a2128/27099
000890368 0247_ $$2altmetric$$aaltmetric:99192128
000890368 0247_ $$2WOS$$aWOS:000640896300002
000890368 037__ $$aFZJ-2021-00913
000890368 082__ $$a530
000890368 1001_ $$0P:(DE-Juel1)166427$$aKlein, Felix$$b0$$eCorresponding author
000890368 245__ $$aSmart alloys as armor material for DEMO: Overview of properties and joining to structural materials
000890368 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000890368 3367_ $$2DRIVER$$aarticle
000890368 3367_ $$2DataCite$$aOutput Types/Journal article
000890368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612193521_4542
000890368 3367_ $$2BibTeX$$aARTICLE
000890368 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890368 3367_ $$00$$2EndNote$$aJournal Article
000890368 520__ $$aTungsten test is currently the baseline first-wall armor material for a future DEMOnstration power plant. Smart alloys, containing tungsten (W), 11.4 weight (wt) % chromium (Cr), and 0.6 wt% yttrium (Y), aim at achieving passive safety in case of air ingress into the vacuum vessel and a loss-of-coolant accident causing a temperature rise above 1200 K for weeks. In such a case, smart alloys suppress oxidation and sublimation of radioactive W.This publication summarizes several important properties of smart alloys: the suppression of oxidation, the hardness as a function of the microstructure, and potential carbide formation in the presence of carbon (C) impurities. Further, first results on joining them to the EUROFER by field-assisted sintering technology (FAST) without interface layer are presented. In literature, FAST is also known as spark plasma sintering (SPS). A stable joint with an tungsten–iron (W–Fe) diffusion layer of 100 nm at the interface was achieved. The joint survived several heat cycles to 873 K.
000890368 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000890368 588__ $$aDataset connected to CrossRef
000890368 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, Andrey$$b1
000890368 7001_ $$0P:(DE-Juel1)180592$$aTan, Xiaoyue$$b2$$ufzj
000890368 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000890368 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b4
000890368 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b5
000890368 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b6
000890368 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b7
000890368 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2021.112272$$gVol. 166, p. 112272 -$$p112272 -$$tFusion engineering and design$$v166$$x0920-3796$$y2021
000890368 8564_ $$uhttps://juser.fz-juelich.de/record/890368/files/Klein_Smart%20alloys%20as%20armor.pdf$$yPublished on 2021-01-30. Available in OpenAccess from 2023-01-30.
000890368 909CO $$ooai:juser.fz-juelich.de:890368$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b0$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b1$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180592$$aForschungszentrum Jülich$$b2$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b4$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b5$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b6$$kFZJ
000890368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b7$$kFZJ
000890368 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000890368 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000890368 9141_ $$y2021
000890368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000890368 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890368 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2018$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000890368 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000890368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000890368 920__ $$lyes
000890368 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000890368 9801_ $$aFullTexts
000890368 980__ $$ajournal
000890368 980__ $$aVDB
000890368 980__ $$aUNRESTRICTED
000890368 980__ $$aI:(DE-Juel1)IEK-4-20101013
000890368 981__ $$aI:(DE-Juel1)IFN-1-20101013