000890370 001__ 890370
000890370 005__ 20210623133458.0
000890370 0247_ $$2doi$$a10.1016/j.jallcom.2020.158401
000890370 0247_ $$2ISSN$$a0925-8388
000890370 0247_ $$2ISSN$$a1873-4669
000890370 0247_ $$2Handle$$a2128/27101
000890370 0247_ $$2WOS$$aWOS:000624942300050
000890370 037__ $$aFZJ-2021-00915
000890370 082__ $$a540
000890370 1001_ $$0P:(DE-HGF)0$$aGu, Wen-Hao$$b0
000890370 245__ $$aRealizing high thermoelectric performance in n-type SnSe polycrystals via (Pb, Br) co-doping and multi-nanoprecipitates synergy
000890370 260__ $$aLausanne$$bElsevier$$c2021
000890370 3367_ $$2DRIVER$$aarticle
000890370 3367_ $$2DataCite$$aOutput Types/Journal article
000890370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612259109_24952
000890370 3367_ $$2BibTeX$$aARTICLE
000890370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890370 3367_ $$00$$2EndNote$$aJournal Article
000890370 520__ $$aBoth p- and n-type SnSe single crystals have been reported to possess high thermoelectric performances, thus highlighting the possibility for commercialization. Polycrystalline SnSe that has better mechanical properties however possesses inferior thermoelectric properties compared to single crystal SnSe. In this work, n-type polycrystalline SnSe0.95 + x wt% PbBr2 (x = 0, 0.5, 1, and 1.5) samples were synthesized by combining mechanical alloying and spark plasma sintering technology. The effects of PbBr2 doping on thermoelectric performance of SnSe were studied in detail. The results show that the carrier concentration was dramatically increased from 2.51 × 1017 cm−3 in pure SnSe0.95 to 1.79 × 1019 cm−3 in SnSe0.95 + 1.5 wt% PbBr2, further resulting in an enhanced electrical conductivity. Multi-nanoprecipitates are present in the samples, including SnO, SnPb and SnBrxOy, which possibly affect the Seebeck coefficient and the lattice thermal conductivity. A peak ZT value of 1.1 was obtained at 773 K for the SnSe0.95 + 1.0 wt% PbBr2 sample. This work highlights that PbBr2 is an effective dopant to improve the TE performance of n-type polycrystalline SnSe.
000890370 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000890370 588__ $$aDataset connected to CrossRef
000890370 7001_ $$0P:(DE-Juel1)128754$$aZhang, Yi$$b1
000890370 7001_ $$0P:(DE-HGF)0$$aGuo, Jun$$b2
000890370 7001_ $$0P:(DE-Juel1)171371$$aCai, Jian-Feng$$b3
000890370 7001_ $$0P:(DE-Juel1)180346$$aZhu, Yu-Ke$$b4
000890370 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b5
000890370 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b6$$eCorresponding author
000890370 7001_ $$0P:(DE-HGF)0$$aXu, Jingtao$$b7
000890370 7001_ $$0P:(DE-HGF)0$$aFeng, Jing$$b8
000890370 7001_ $$0P:(DE-HGF)0$$aGe, Zhen-Hua$$b9
000890370 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2020.158401$$gVol. 864, p. 158401 -$$p158401 -$$tJournal of alloys and compounds$$v864$$x0925-8388$$y2021
000890370 8564_ $$uhttps://juser.fz-juelich.de/record/890370/files/Revised%20Manuscript%20for%20JAC2021.pdf$$yPublished on 2021-01-11. Available in OpenAccess from 2023-01-11.
000890370 909CO $$ooai:juser.fz-juelich.de:890370$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128754$$aForschungszentrum Jülich$$b1$$kFZJ
000890370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b5$$kFZJ
000890370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b6$$kFZJ
000890370 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000890370 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000890370 9141_ $$y2021
000890370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-08
000890370 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890370 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890370 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2018$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000890370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000890370 920__ $$lyes
000890370 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000890370 980__ $$ajournal
000890370 980__ $$aVDB
000890370 980__ $$aUNRESTRICTED
000890370 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000890370 9801_ $$aFullTexts