001     890385
005     20220930130305.0
024 7 _ |a 10.1021/acssynbio.0c00599
|2 doi
024 7 _ |a 2128/27592
|2 Handle
024 7 _ |a altmetric:100316771
|2 altmetric
024 7 _ |a 33593066
|2 pmid
024 7 _ |a WOS:000631444600015
|2 WOS
037 _ _ |a FZJ-2021-00918
082 _ _ |a 570
100 1 _ |a Tenhaef, Niklas
|0 P:(DE-Juel1)168172
|b 0
245 _ _ |a Automated Rational Strain Construction Based on High-Throughput Conjugation
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642442639_31326
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular cloning is the core of synthetic biology, as it comprises the assembly of DNA and its expression in target hosts. At present, however, cloning is most often a manual, time-consuming, and repetitive process that highly benefits from automation. The automation of a complete rational cloning procedure, i.e., from DNA creation to expression in the target host, involves the integration of different operations and machines. Examples of such workflows are sparse, especially when the design is rational (i.e., the DNA sequence design is fixed and not based on randomized libraries) and the target host is less genetically tractable (e.g., not sensitive to heat-shock transformation). In this study, an automated workflow for the rational construction of plasmids and their subsequent conjugative transfer into the biotechnological platform organism Corynebacterium glutamicum is presented. The whole workflow is accompanied by a custom-made software tool. As an application example, a rationally designed library of transcription factor-biosensors based on the regulator Lrp was constructed and characterized. A sensor with an improved dynamic range was obtained, and insights from the screening provided evidence for a dual regulator function of C. glutamicum Lrp.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stella, Robert
|0 P:(DE-Juel1)165361
|b 1
700 1 _ |a Frunzke, Julia
|0 P:(DE-Juel1)138503
|b 2
700 1 _ |a Noack, Stephan
|0 P:(DE-Juel1)129050
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acssynbio.0c00599
|g p. acssynbio.0c00599
|0 PERI:(DE-600)2644383-1
|n 3
|p 589–599
|t ACS synthetic biology
|v 10
|y 2021
|x 2161-5063
856 4 _ |u https://juser.fz-juelich.de/record/890385/files/Invoice_APC600187911.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890385/files/Tenhaef_Stella_ACS_preprint.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/890385/files/acssynbio.0c00599-1.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://juser.fz-juelich.de/record/890385/files/acssynbio.0c00599.pdf
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:juser.fz-juelich.de:890385
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138503
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129050
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SYNTH BIOL : 2018
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SYNTH BIOL : 2018
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21