000890401 001__ 890401
000890401 005__ 20230111074324.0
000890401 0247_ $$2doi$$a10.1007/s00422-020-00852-8
000890401 0247_ $$2ISSN$$a0023-5946
000890401 0247_ $$2ISSN$$a0340-1200
000890401 0247_ $$2ISSN$$a1432-0770
000890401 0247_ $$2Handle$$a2128/27106
000890401 0247_ $$2pmid$$a33289879
000890401 0247_ $$2WOS$$aWOS:000598085900001
000890401 037__ $$aFZJ-2021-00928
000890401 041__ $$aEnglish
000890401 082__ $$a000
000890401 1001_ $$0P:(DE-HGF)0$$aCodianni, Marcello G.$$b0$$eCorresponding author
000890401 245__ $$aThe roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG
000890401 260__ $$aHeidelberg$$bSpringer$$c2020
000890401 3367_ $$2DRIVER$$aarticle
000890401 3367_ $$2DataCite$$aOutput Types/Journal article
000890401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612363646_9592
000890401 3367_ $$2BibTeX$$aARTICLE
000890401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890401 3367_ $$00$$2EndNote$$aJournal Article
000890401 520__ $$aPrevious authors have proposed two basic hypotheses about the factors that form the basis of locomotor rhythms in walking insects: sensory feedback only or sensory feedback together with rhythmic activity of small neural circuits called central pattern generators (CPGs). Here we focus on the latter. Following this concept, to generate functional outputs, locomotor control must feature both rhythm generation by CPGs at the level of individual joints and coordination of their rhythmic activities, so that all muscles are activated in an appropriate pattern. This work provides an in-depth analysis of an aspect of this coordination process based on an existing network model of stick insect locomotion. Specifically, we consider how the control system for a single joint in the stick insect leg may produce rhythmic output when subjected to ascending sensory signals from other joints in the leg. In this work, the core rhythm generating CPG component of the joint under study is represented by a classical half-center oscillator constrained by a basic set of experimental observations. While the dynamical features of this CPG, including phase transitions by escape and release, are well understood, we provide novel insights about how these transition mechanisms yield entrainment to the incoming sensory signal, how entrainment can be lost under variation of signal strength and period or other perturbations, how entrainment can be restored by modulation of tonic top-down drive levels, and how these factors impact the duty cycle of the motor output. 
000890401 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000890401 588__ $$aDataset connected to CrossRef
000890401 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b1$$ufzj
000890401 7001_ $$00000-0002-1513-1551$$aRubin, Jonathan E.$$b2
000890401 773__ $$0PERI:(DE-600)1458477-3$$a10.1007/s00422-020-00852-8$$gVol. 114, no. 6, p. 533 - 555$$n6$$p533 - 555$$tBiological cybernetics$$v114$$x1432-0770$$y2020
000890401 8564_ $$uhttps://juser.fz-juelich.de/record/890401/files/Codianni_2020_Biological%20Cybernetics_TheRolesOfAscendingSensorySign...pdf$$yOpenAccess
000890401 909CO $$ooai:juser.fz-juelich.de:890401$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b1$$kFZJ
000890401 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000890401 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890401 9141_ $$y2021
000890401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL CYBERN : 2018$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-08-28$$wger
000890401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000890401 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger
000890401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000890401 920__ $$lyes
000890401 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000890401 980__ $$ajournal
000890401 980__ $$aVDB
000890401 980__ $$aUNRESTRICTED
000890401 980__ $$aI:(DE-Juel1)INM-3-20090406
000890401 9801_ $$aFullTexts