001     890419
005     20220111142649.0
024 7 _ |a 10.1016/j.bpj.2021.01.017
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a 2128/27391
|2 Handle
024 7 _ |a altmetric:99010811
|2 altmetric
024 7 _ |a 33515603
|2 pmid
024 7 _ |a WOS:000630953600021
|2 WOS
037 _ _ |a FZJ-2021-00939
082 _ _ |a 570
100 1 _ |a Pfleger, Christopher
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels
260 _ _ |a Bethesda, Md.
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641839419_25112
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker disk (CL). Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP binding sites or towards the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kusch, Jana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kondapuram, Mahesh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwabe, Tina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sattler, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Benndorf, Klaus
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.bpj.2021.01.017
|g p. S0006349521000576
|0 PERI:(DE-600)1477214-0
|n 5
|p 950-963
|t Biophysical journal
|v 120
|y 2021
|x 0006-3495
856 4 _ |u https://juser.fz-juelich.de/record/890419/files/HCN2_Allostery_SI_BiophysJ_rev_final.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/890419/files/HCN2_Allostery_main_BiophysJ_rev_final.pdf
|y Published on 2021-01-28. Available in OpenAccess from 2022-01-28.
909 C O |o oai:juser.fz-juelich.de:890419
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2018
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21