000890422 001__ 890422
000890422 005__ 20240610120521.0
000890422 0247_ $$2doi$$a10.1088/1361-6668/abda5c
000890422 0247_ $$2ISSN$$a0953-2048
000890422 0247_ $$2ISSN$$a1361-6668
000890422 0247_ $$2Handle$$a2128/27122
000890422 0247_ $$2altmetric$$aaltmetric:99326446
000890422 0247_ $$2WOS$$aWOS:000614065000001
000890422 037__ $$aFZJ-2021-00942
000890422 082__ $$a530
000890422 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b0$$eCorresponding author
000890422 245__ $$aBulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions
000890422 260__ $$aBristol$$bIOP Publ.$$c2021
000890422 3367_ $$2DRIVER$$aarticle
000890422 3367_ $$2DataCite$$aOutput Types/Journal article
000890422 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612537594_9439
000890422 3367_ $$2BibTeX$$aARTICLE
000890422 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890422 3367_ $$00$$2EndNote$$aJournal Article
000890422 520__ $$aNanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 $ \times $ 2 $ \times $ 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current–phase relationship in the nanobridge JJs, were performed according to Ginzburg–Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current–voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.
000890422 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000890422 588__ $$aDataset connected to CrossRef
000890422 7001_ $$0P:(DE-Juel1)180178$$aBikulov, Timur$$b1
000890422 7001_ $$0P:(DE-Juel1)164829$$aBosboom, Vincent$$b2
000890422 7001_ $$0P:(DE-HGF)0$$aGolubov, Alexander A$$b3
000890422 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E$$b4
000890422 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/abda5c$$n3$$p035014$$tSuperconductor science and technology$$v34$$x1361-6668$$y2021
000890422 8564_ $$uhttps://juser.fz-juelich.de/record/890422/files/Faley_2021_Supercond._Sci._Technol._34_035014.pdf$$yRestricted
000890422 8564_ $$uhttps://juser.fz-juelich.de/record/890422/files/Faley%2Bet%2Bal_2021_Supercond._Sci._Technol._10.1088_1361-6668_abda5c.pdf$$yPublished on 2021-02-02. Available in OpenAccess from 2022-02-02.
000890422 909CO $$ooai:juser.fz-juelich.de:890422$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000890422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000890422 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000890422 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000890422 9141_ $$y2021
000890422 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890422 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2018$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-09$$wger
000890422 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000890422 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-09$$wger
000890422 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000890422 920__ $$lyes
000890422 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000890422 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000890422 9801_ $$aFullTexts
000890422 980__ $$ajournal
000890422 980__ $$aVDB
000890422 980__ $$aUNRESTRICTED
000890422 980__ $$aI:(DE-Juel1)PGI-5-20110106
000890422 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000890422 981__ $$aI:(DE-Juel1)ER-C-1-20170209