001     890422
005     20240610120521.0
024 7 _ |a 10.1088/1361-6668/abda5c
|2 doi
024 7 _ |a 0953-2048
|2 ISSN
024 7 _ |a 1361-6668
|2 ISSN
024 7 _ |a 2128/27122
|2 Handle
024 7 _ |a altmetric:99326446
|2 altmetric
024 7 _ |a WOS:000614065000001
|2 WOS
037 _ _ |a FZJ-2021-00942
082 _ _ |a 530
100 1 _ |a Faley, Michael
|0 P:(DE-Juel1)130633
|b 0
|e Corresponding author
245 _ _ |a Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612537594_9439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 $ \times $ 2 $ \times $ 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current–phase relationship in the nanobridge JJs, were performed according to Ginzburg–Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current–voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.
536 _ _ |a 535 - Materials Information Discovery (POF4-535)
|0 G:(DE-HGF)POF4-535
|c POF4-535
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bikulov, Timur
|0 P:(DE-Juel1)180178
|b 1
700 1 _ |a Bosboom, Vincent
|0 P:(DE-Juel1)164829
|b 2
700 1 _ |a Golubov, Alexander A
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dunin-Borkowski, Rafal E
|0 P:(DE-Juel1)144121
|b 4
773 _ _ |a 10.1088/1361-6668/abda5c
|0 PERI:(DE-600)1361475-7
|n 3
|p 035014
|t Superconductor science and technology
|v 34
|y 2021
|x 1361-6668
856 4 _ |u https://juser.fz-juelich.de/record/890422/files/Faley_2021_Supercond._Sci._Technol._34_035014.pdf
|y Restricted
856 4 _ |y Published on 2021-02-02. Available in OpenAccess from 2022-02-02.
|u https://juser.fz-juelich.de/record/890422/files/Faley%2Bet%2Bal_2021_Supercond._Sci._Technol._10.1088_1361-6668_abda5c.pdf
909 C O |o oai:juser.fz-juelich.de:890422
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144121
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUPERCOND SCI TECH : 2018
|d 2020-09-09
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21