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Abstract  20 

Searching for next-generation electrocatalyst materials for electrochemical energy 21 

technologies is a time-consuming and expensive process, even if it is enabled by high-22 

throughput experimentation and large-scale first-principle calculations. In particular, the 23 

development of more active, selective and stable electrocatalysts for the CO2 reduction reaction 24 

remains tedious and challenging. Here, we introduce a material recommendation and screening 25 

framework, and demonstrate its capabilities for certain classes of electrocatalyst materials for 26 

low or high-temperature CO2 reduction. The framework utilizes high-level technical targets, 27 

advanced data extraction, and categorization paths, and it recommends the most viable 28 

materials identified using data analytics and property-matching algorithms. Results reveal 29 

relevant correlations govern catalyst performance under low and high-temperature conditions. 30 
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1. INTRODUCTION 31 

CO2 emissions are the main cause of human-made global warming. 1 To avert the direst 32 

consequences of this global change, the Paris Agreement calls for a net 80 to 95 % reduction 33 

of CO2 emissions by 2050.2 The rapid development of sustainable energy sources and 34 

environmentally benign storage and conversion technologies is thus a foremost goal in 35 

scientific research and technology development pursued collectively by countries around the 36 

world. 37 

 38 

CO2 can be used as a renewable feedstock for the production of synthetic fuels or fuel 39 

precursors such as CO, CH3OH, and CH4, addressing the problem of the intermittency of 40 

renewably generated energy from wind turbines and solar cells.3, 4,5-7 This energy storage 41 

pathway renders the CO2 reduction reaction (CO2RR) a crucial and extensively researched 42 

electrochemical process.8, 9   43 

 44 

CO2RR processes inside an electrochemical cell require stable, cost-effective and highly 45 

performing electrocatalyst materials. The challenge of optimizing catalytic materials, 46 

electrodes and devices for the CO2RR, calls for further investigation into factors that control 47 

their catalytic activity and stability. The electrocatalytic media, which are usually 48 

heterogeneous composites of the active material embedded into a  host medium with suitable 49 

transport properties for gaseous reactants, liquid products, dissolved ions, and electrons, can 50 

undergo significant changes in structure and composition under operation through various 51 

phenomena such as Ostwald ripening, particle detachment or coagulation in nanoparticle-based 52 

catalyst layers; surface reconstruction, oxidation or passivation by irreversible adsorption; or 53 

electrolyte disintegration. Besides, inhibited mass transport due to non-optimal wetting of the 54 

porous electrode could cause additional voltage loss or limit the current density (CD) that a cell 55 

could attain.  56 

 57 

A recently performed cost-benefit analysis has shown that electrochemical CO2 conversion  58 

processes need to be economically viable at the system level, while the faradaic efficiency (FE) 59 

and energy efficiency (EF) must be maximized at the component and cell levels. 8, 10 The 60 

hydrogen evolution reaction (HER) is  parallel process in CO2 reduction cells, which impacts 61 

the yield of synthetic fuel or fuel precursor production.11  Minimization of hydrogen production 62 
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requires electrocatalyst materials that are highly selective in terms of the reaction pathway to 63 

support. 64 

 65 

The integration, testing and qualification of new catalyst materials is a tedious and time-66 

consuming process as there are limitations even for the best catalysts due to specific 67 

compatibilities that are required with other components in a membrane electrode assembly 68 

(MEA), single cell or stack of the electrochemical device. Challenges in this context involve 69 

reactant and product transport as well as water and heat balances. These phenomena are 70 

coupled across multiple components and interfaces in a cell, and they determine 3D 71 

distributions of local reaction conditions in active electrode media.  Assessing the impact of a 72 

new catalyst material on cell performance at cell and stack levels is thus a complex undertaking. 73 

An electrocatalyst material may show markedly improved activity and selectivity in a well-74 

defined lab set-up under precisely controlled reaction conditions; but this improvement may 75 

not survive when the material is incorporated in a real cell and tested under realistic conditions. 76 

 77 

Complex electrocatalytic media cannot be studied solely with computational studies based on 78 

density functional theory (DFT). Usually, the complexity of materials, components and 79 

physicochemical phenomena to be considered as well as the interplay of solvation effects, 80 

charge transfer and electrifc field effects at the interface, warrant a well-devised hierarchical 81 

framework in modeling and simulation that interweaves computational approaches, including 82 

DFT as well as classical simulations, microkinetic modeling of reaction mechanisms, interface 83 

and charge transfer theory, and continuum modeling of transport processes at the electrode 84 

scale, to rationalize local reaction conditions, decipher reaction mechanisms and calculate 85 

reaction rates. Considering all of these aspects, the theory-driven approach towards the 86 

development of highly active, selective and stable electrocatalysts for the CO2RR remains a 87 

highly challenging task.13, 14  88 

 89 

The discovery and scale-up of integrated materials, i.e., those materials that are integrated into 90 

a component, cell, and device to fulfill certain functionalities at the device level, require 91 

significant capacities for characterization, testing, and optimization at all structural levels. The 92 

discovery-to-demonstration pipeline of new electrocatalyst materials, including fabrication 93 

scale-up and integration with the electrolysis cell components is thus more complex to follow 94 

through than it is for simpler, so-called “molecular materials”, where minimum integration and 95 
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optimization is required beyond materials properties. 13,14 Apart from performance metrics 96 

related to activity, yield and selectivity, the degradation of cell components, overall system 97 

durability and overall cell lifetime present essential issues to be addressed, which are related to 98 

the stability of a catalyst material for given environmental conditions and operating regimes.  99 

 100 

The key attributes of a successful design of CO2 reduction cells include high mass activity of 101 

electrocatalysts to provide a low overpotential at reasonable materials cost, catalyst layer 102 

microstructure to facilitate charge and mass transfer, well-attuned wettabilities of porous 103 

transport media to optimize the water distribution across the cell, and mechanical and chemical 104 

durability. New approaches in materials design and integration are needed to realize the 105 

selective transformation of CO2 into desired products in scale-up pilot or industrial setups.  106 

 107 

Tremendous investigations have recently been made to design, synthesize and develop new 108 

CO2RR electrocatalysts.4,12 Machine learning (ML) and data-driven methods provide a 109 

powerful set of methods and tools to accelerate materials discovery.15, 16 Fundamentally, ML 110 

is the practice of using statistical algorithms to parse data, learn from a set of indicators 111 

(performance metrics) and then make a fast determination or a prediction of target performance 112 

properties of any new data sets. ML in materials science is mostly concerned with supervised 113 

learning.  One must realize that the selection of high-quality (accurate) datasets in addition to 114 

an appropriate set of descriptors is more important than the selection of the ML algorithm itself. 115 

The former would be considered as the first step for building any ML application; confirming 116 

the fact that an accurate ML is likely impossible without an accurate dataset. The suitable ML 117 

model, denoted as classification, regression, or rank ordering models, depends on the type of 118 

the desired outcome.13 119 

 120 

However, describing all the complexities of the electrochemical interface within the DFT 121 

model, with respect to the number and the type of components (catalyst, solvent molecules, 122 

solvent ions, etc.), as well as the physics and chemical implications (electric fields, 123 

solvation, free energy, charge transfer, etc.), is challenging due to computational limitations.  124 

Classification models are designed to allocate a substance to a given number of categories such 125 

as active and inactive catalysts; they can be used to separate groups of molecules or materials 126 

according to the presence or absence of a target property. For instance, CO2RR electrocatalysts 127 

can be classified based on their Faradaic enfficiency or selectivity for a given product. In this 128 
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context, several statistical tools, in particular, regression models attempt to determine a 129 

function that can represent a continuous hypersurface that relates indicator variance to 130 

observable electrocatalytic properties. Regression models are used for where prediction and 131 

discovery of a missing physico-chemical property such as performance or selectivity are 132 

needed.17 Ranking models put out the order of electrocatalysts for a specific property; they are 133 

highly useful for electrocatalysts design and discovery where the priority of one property over 134 

another is more important than its exact value.18-20 135 

 136 

Recent self-learning algorithms have greatly influenced heterogeneous catalysis research due 137 

to the availability of ML analysis tools, e.g., Python Scikit-learn, TensorFlow and workflow 138 

management tools such as ASE21, Atomate22, and the proliferation of large public materials 139 

databases, including  Materials Project23, Novel Materials Discovery Laboratory24, 140 

Citrination25, CatApp26, and AiiDA27 and advancement of applied statistical algorithms and 141 

models. 142 

 143 

ML models have been utilized in a variety of energy material applications to design and 144 

discover novel electrocatalyst materials with superior performance (e.g., higher energy density 145 

and higher energy conversion efficiency).28, 29 Such models can have a transformative impact 146 

on the urgent needs for a variety of low cost CO2RR catalysts with high product selectivity 147 

and maximal performance.18, 30-33 For instance, ML models have been used to disentangle the 148 

catalyst-adsorbate interactions for various reactions, including  CO2RR. 34, 35 A combination of 149 

advanced optimization tools based on ML and other conventional approaches was developed 150 

to predict electrocatalyst performance for CO2 reduction and H2 evolution.34 151 

 152 

In this work, we demonstrate a data-driven framework for materials screening, which is 153 

particularly applied to low and high temperate catalysts for CO2 reduction.36, 37,10, 38 154 

A viable electrocatalyst for the CO2RR must satisfy performance metrics related to current 155 

density, faradaic efficiency, energy efficiency, overpotential, production rate, and chemical 156 

stability. Correlations among these performance metrics at low or high temperature remain 157 

largely unknown and require extensive data analytics.  158 

 159 

Our data-driven methodology is designed with the objectiveof integrating domain-specific data 160 

sources in order to eliminate difficulties in data collection and interpretation from multiple 161 
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sources and data types. The integration process consists of a combination of “modular” sub-162 

processes to build "standardized energy materials data" in real-time with advanced filtering, 163 

scale-up and cognitive insights, ML, and fundamental data analytics functionalities, including 164 

visualization and big-data management tools. The recommendation system and decision 165 

module utilize high-level technical targets as input data, which can be displayed in the form of 166 

radar (or spider) charts, advanced data extraction and categorization using deep learning 167 

techniques, property-matching algorithms to search for the best viable materials that satisfy 168 

selected high-level technical targets, and finally a multi-parameter optimization to recommend 169 

top choices in connection with ML algorithms.  170 
 171 

2. METHODOLOGY 172 
 173 

2.1 Application-Driven Architecture 174 

In order to offer scale-bridging capabilities to connect crucial steps in materials design-to-175 

device integration, an application-driven architecture has been introduced and demonstrated 176 

[36]. The integral part of this architecture is an embedded master data lake, consisting of large-177 

scale metadata for electrocatalyst materials, which is collected from various types and sources 178 

of materials data. Key technical targets such as activity (i.e., the faradaic efficiency), stability, 179 

and selectivity are generally defined at cell and device level and may also correlate differently 180 

at low or high temperatures with physicochemical properties of electrocatalyst and cell or 181 

device operating conditions. 39, 40 182 

Figure 1 illustrates the functional layers of the ML-enabled data analytics approach and its 183 

underlying workflow. The workflow comprises various layers including user-defined or default 184 

data sources and databases, analytics modules, and self-driving algorithms, which are generally 185 

used in any materials discovery, regardless of the corresponding field of application. The 186 

complexity with scale-up and discovery of integrated materials also implies the need for ad-187 

hoc communication among parallel or series of synthesis and characterization steps or 188 

equipment, in-device component integration, and device testing or validation. This all-189 

embracing workflow along the complete development pipeline can potentially enhance data 190 

communication and understanding correlations among structure, functional properties, and 191 

performance indicators at all scales from materials discovery to device performance and 192 

optimization. 193 

 194 
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comprising various data sources and physico-chemical processes, which are used in materials 195 

discovery. The main distinction is between autonomous and de-centralized approaches. For the 196 

autonomous approach, the entire precursor preparation, mixing, testing, and characterization 197 

processes are performed by an automated robotic equipment. In contrast, the de-centralized 198 

approach utilizes existing legacy equipment by employing advances in AIand the Internet of 199 

Things (IoT) connectivity. This enforces communication among different processes and 200 

equipment can take place seamlessly via cloud computing. A cognitive processwith accurate 201 

and distinct correlation functions between structure, functional properties, and performance 202 

can enhance the de-centralized approach to materials discovery. The decentralized approach 203 

can bring about a robust and rapid implementation in a more cost-effective fashion than that 204 

under an autonomous process. 205 

 206 
2.2 Master Data Lakes 207 

A vital prerequisite for any form of ML application is the provision of a suitable dataset for a 208 

given domain. The search for new electrocatalyst materials essentially needs a minimal and 209 

sufficient set of performance indicators from the "chemical domain" and the "property domain" 210 

of different electrocatalyst materials. 44 211 

 The master database is formed from materials datasets collected from a wide range of sources 212 

and user-types, namely 1) unpublished records of academic researchers, 2) published articles, 213 

and 3) other public records and industry collaborators. The details of the data retrieval from 214 

images, tables and texts are described in ref [36].The resulting database is stored in excel or 215 

CSV format with predefined and standardized headers that include metadata preprocessing and 216 

cleaning.  217 

In this article, the CO2RR experimental databases were generated from literature sources on 218 

the basis of seven input variables; electrocatalyst type, faradaic efficiency, applied potential, 219 

current density, type of electrolyte, the major product, and temperature. Each experimental data 220 

point is characterized by a set of performance indicators for catalyst formulation and reaction 221 

conditions, either as continuous values (such as current density) or as categorical values (such 222 

as catalyst type). The ranges and number of the corresponding input variables are summarized 223 

in Table 1. 224 

 225 
 226 
 227 
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2.3 Machine Learning Algorithms 228 

 229 

ML classification models could be used to identify and classify material and group or map 230 

them in terms of their properties (descriptors), which is the first essential requirement prior to 231 

any ML-based predictions. We use the Scikit-learn package in the ML modules.42   232 

 233 

The ML algorithms employed for classification of electrocatalyst and product type include 234 

logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (KNN) 235 

classifier, and random forest (RF) classifier. In addition, we tried to classify groups of products 236 

by putting all possible products into two or three different larger groups of products. In order 237 

to compare the predictability of different models for finding missing data, four ensembles of 238 

ML algorithms were evaluated. The regression algorithms include Bagging Regression (BR), 239 

Gradient Boosting Regression (GBR), Random Forest Regression (RFR), and Extra Trees 240 

Regression (ETR). BR is an ensemble method that fits regressors on random subsets of the 241 

original dataset and makes a final decision based on aggregated prediction. The bagging 242 

method increases the robustness of the original set of models by introducing randomness during 243 

the training process and then ensembling their predictions. GBR builds a model in a forward 244 

stage-wise style, which enables optimization on any differentiable loss functions. RF is a 245 

typical ensemble learning model that operates by building a set of decision trees and yielding 246 

average prediction of a separate tree. Random decision forests are superior to decision trees 247 

due to the ability to solve the over-fitting issue. Finally, extra trees  implement a meta-estimator 248 

that fits several random decision trees on different sub-samples of the dataset and utilizes the 249 

mean of trees to boost the predictive performance and reduce the variance. ETR and RFR 250 

models have shown to be promising in the modeling of chemical systems. Each algorithm was 251 

trained on the training data for the CO2 reduction reaction. The algorithms were then 252 

implemented to predict faradaic efficiency, applied potential (AP), and current density for the 253 

test dataset. We used the ML hyperparameter optimization module to tune hyperparameters 254 

automatically. 255 

 256 

The accuracy score (%) (i.e., the ratio of correct predictions to the total number of predictions) 257 

is used as a performance metric for the evaluation of each classification algorithm. The 258 

performance of each ML algorithm for prediction was evaluated by using several statistical 259 
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indicators such as the mean squared errors (MSE), the root mean squared error (RMSE), and 260 

the coefficient of determination (R2),  261 

 262 

 263 
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 268 

in which %- and %'- are the true and predicted values, respectively, %;- is the mean of the true 269 

values, and n is the number of samples. 270 
 271 
 272 
2.4 Modular Design 273 

The complexity of the materials design-to-device integration calls upon a modular approach, 274 

in which various data management tasks and data analytics tools are built and tested in isolation 275 

as stand-alone-modules. The suitable modules are then called and integrated to the main 276 

platform depending upon application area, required analysis tools, and type of meta-data that 277 

the user needs to utilize for the analysis.  In the following, we describe the adaptation of each 278 

module and their inter-dependencies for the analysis of electrocatalytic materials for CO2RR.   279 

  280 
2.4.1 Classification and Materials Data Extraction 281 

This module utilizes a classification algorithm that categorizes catalyst materials in the form 282 

of performance range (e.g., potential or current density) or selectivity or type of products. The 283 

reference values for high-level technical targets are based on a “performance matrix” that is 284 

provided as default for that field of application or as a user-entry table for the target values. 285 

These initial values can be seen as the first set of keywords for data mining and data discovery 286 

from the literature sources for given material application fields or sub-classes therein such as 287 

low-temperature catalysts, high-temperature catalyst. The extracted data is then mapped on 288 
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these key technical parameters and other crucial measurement conditions for each class of 289 

materials. 290 
 291 
2.4.2 Materials Property Prediction 292 

This module can predict a specific electrocatalytic property such as the faradaic efficiency as 293 

a function of input or exploratory variables using embedded ML models. The results of these 294 

ML prediction models can refine the usefulness and relevance of the user input variables. The 295 

module also helps fill missing data points related to performance indicators or target properties 296 

in the database as much as possible and thus enrich the master database. In this context, 297 

electrode type, current density, voltage, polarization resistance, conductivity, electrolyte type 298 

and composition, temperature, type of product, and (rarely) faradaic efficiency are among the 299 

key factors that may influence CO2RR performance.  300 
 301 
2.4.3 Recommendation System and Decision Models 302 

The performance tuning algorithm is the first layer of the recommendation module that uses 303 

the complete dataset to find the best electrocatalyst material based on performance and stability 304 

metrics’s target values. It displays the information using standard visualization tools, for 305 

example, using a radar chart. A radar chart is a typical visualization tool implied in 306 

benchmarking electrocatalyst material for the purpose of quality and performance 307 

improvement of a system of materials or an electrochemical device.41 The use of radar charts 308 

makes two significant contributions: first, it provides a simple 2D visual representation of 309 

multiple performance indicators without the need of using dimensionality reduction on 310 

multivariate data, second, the surface area, formed by spikes (or axes), can be referred to as an 311 

electrocatalyst performance indicator. 312 

 313 

The ML-powered recommendation module uses the power of regression modeling to predict 314 

values for the missing data as accurately as possible. Supplementary Table 1 (Supplementary 315 

Materials) shows the sample data statistics used for training the regression models for 316 

predicting the missing data, specifically for applied potential, current density, and faradaic 317 

efficiency. Datapoints for four types of electrocatalyst material were selected, as there was not 318 

enough data for predicting other variables in the CO2 experimental database. 319 

 320 

 321 
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2.4.4 Data Matching and Validation 322 

The ultimate criterion for ML-based predictive capabilities is experimental validation, which 323 

demonstrates how computer algorithms lead to real discoveries. After predicting the best 324 

candidate electrocatalyst material, the prediction can be validated by direct comparison to 325 

experimental data for the same or almost the same set of conditions and catalyst materials 326 

specifications. 36  327 

 328 

In our predictive algorithm, CO2 electrocatalyst materials are generally categorized into three 329 

main groups: metallic, non-metallic, and molecular catalysts. Each category of electrocatalyst 330 

materials exhibits distinct physicochemical and electrocatalytic properties. Therefore, it is 331 

possible that the performance of an electrocatalyst material is restricted and limited to the group 332 

of catalyst materials it belongs to. Here, we used ML classification models to classify different 333 

electrocatalyst materials into different groups based on their performance. The numerical data 334 

are normalized between 0 and 1, and we encoded the categorical data using "OneHotEncoder" 335 

from the Scikit-learn data preprocessing module. 42 336 

 337 

Most of the data in our Master database at low temperature is for Cu electrocatalyst, with the 338 

key properties of applied potential (AP), current density (CD), and faradaic efficiency (FE), 339 

type of electrolyte, and type of product. Material properties predictions thus focus on these 340 

attributes. 341 
 342 

3. RESULTS and DISCUSSION 343 
 344 

3.1 Materials Recommendation  345 

Figure 2 shows the workflow of material recognition. In order to identify an electrocatalyst 346 

material for a given electrochemical process, it is expected that the performance metrics of the 347 

chosen electrocatalyst meet or exceed the target values set by the user. For this purpose, one 348 

needs to consider the key performance metrics, i.e., faradaic efficiency, current density, applied 349 

potential, selectivity, and production rate, while selecting the best electrocatalyst material. 350 

In practice, keeping track of all variables and establishing correlations among optimization 351 

parameters in an electrochemical reaction path is a difficult task; once a set of properties is set 352 

to the optimum values, other properties of the catalyst can have values which below user 353 
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requirements. We attempt to address this challenge by introducing a penalty function for any 354 

value less than the desired value for a target application variable. 355 

 356 

The recommendation process shown in Figure 2 initially takes input from the user-specified 357 

target values. The recommendation then selects the "best" electrocatalyst or recommends 358 

electrocatalysts materials primarily based on the targets for the set of performance metrics 359 

defined by the user. Global target values are provided as default if no user-entry target values 360 

are available. In order to minimize the optimization effort and for fast and better identification 361 

criteria, the user is provided with one of the following identification schemes: (i) find any 362 

electrocatalyst material for some desired value of a metric, with any chemical product. (ii) find 363 

any electrocatalyst material for target value metrics for a specific set of chemical products, (iii) 364 

find some desired performance metrics, within specific electrocatalyst material groups, with 365 

any product. (iv) find some desired properties within specific electrocatalyst material groups, 366 

for a certain set of chemical products. The user is given target values for selected metrics, 367 

electrocatalyst type, and chemical products, where a user is able to filter data based on products 368 

and electrocatalyst material or simply select all the possibilities. If the user provides target 369 

values for all metrics, the recommendation algorithm selects electrocatalyst material with 370 

properties equal (with less than 10% deviation) or better than the user target. If the user 371 

provides target values for a few properties and not all the properties, then the algorithm uses 372 

default global target values for those target properties that are not provided by the user. 373 

 374 

Here, a rather simplified, yet straightforward method for selecting an electrocatalyst material 375 

is employed by using a radar chart to identify the material, which encloses the graph’s 376 

maximum area. Although this heuristic method can be seen as practically useful, it may lead to 377 

a biased selection of electrocatalyst materials with few performance indicators at high values, 378 

while others remain at low values. It ignores the ranking and importance of different variables.  379 

 380 

Our optimization algorithm employs a special scoring factor where it scores the positive value 381 

for properties that are higher or equal to the user target values and penalize properties that are 382 

less than the user target values. The value of the penalty function becomes more valuable for 383 

performance indicators that significantly less than the actual target values. This sub-routine 384 

recommends catalyst materials that exhibit high values in one or multiple attributes from 385 

performance matrix table. 386 
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The scoring factor is defined by,  387 

"BCDE- = , FGHHEDE+BE-I
I3J

I32

										(4)	388 

G:	GM	NℎE	+PQRED	CH	DCS 389 

 390 

where k is the number of target properties (P). If T-U ≥ TWXYZ	[\Z]Y^U 391 

FGHHEDE+BE-U = T-U − TWXYZ	[\Z]Y^U 392 

If T-U < TWXYZ	[\Z]Y^U 393 

FGHHEDE+BE-U = 5(a:b1acdef	ghfiejU) − 1 394 

 395 

Where T-U	is the default target value of property j for the row number G and TWXYZ	[\Z]Y^U is user 396 

defined target value for property j. 397 

The constraint for the penalty function is set at 5, representing the maximum error tolerated. 398 

Once the scoring factors for each row in the database are calculated, the algorithm recommends 399 

electrocatalyst materials with high score values, as illustrated in Supplementary Figure 1.  400 

 401 

3.2 Low-temperature electrocatalyst materials 402 

Figure 3 shows the visualization of data, which is distributed among applied potential, current 403 

density, and faradaic efficiency for different types of electrocatalysts at low- or high-404 

temperature. The diagonal graphs represent the density plot of each respective feature, 405 

providing useful information by giving a density of plots in the form of bar charts. Among the 406 

possible choices of electrocatalysts at low temperatures, mainly four types of Cu-based 407 

electrocatalysts are used for the classification task. The dataset is divided into training and test 408 

datasets. The dataset consists of 228 of different Cu electrocatalyst materials, in which training 409 

and test datasets consist of 183 and 45 data points, respectively. Each data point consists of a 410 

set of properties for a given material. The same materials may appear in different data points 411 

with different operating conditions. The materials space is then scanned using a set of identified 412 

descriptors, such as selectivity for a given product or performance indicators against a reference 413 

target range. The latter is performed using machine learning techniques. Model performance 414 

for classification of the type of electrocatalyst and type of products was evaluated through the 415 

calculation of an accuracy score.  416 

 417 
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As illustrated in Table 2, the key indicators (AP, CD, FE, Product selectivity) have high cross-418 

validation scores, which can vary according to the ML algorithms. The LR and LDA classifiers 419 

are found to return the highest accuracy score of 81%, determining the type of electrocatalyst. 420 

QDA classifier has an accuracy score of 32%, which is remarkably lower than that for other 421 

classifiers.  422 

 423 

As shown in Table 3, the indicators of AP, CD, FE, and type of electrocatalyst yield a higher 424 

accuracy for classification of a group of two products [CH4, C2H5OH] in comparison with two 425 

other groups, each consists of three different products. RF and LDA classifiers return value of 426 

1 and 0.93, respectively, for accuracy score of all test cases. In general, RF classifier has the 427 

best performance among other algorithms for the classification of the type of products 428 

regardless of the number of products.  429 

 430 

LR, LDA, QDA, and GNB algorithms were unable to distinguish and single out one group of 431 

products, including those with three different products. Additionally, GNB returns an accuracy 432 

score of 26%, the lowest of all six algorithms. It is obvious that the better performance of ML 433 

algorithms can be achieved for the group of two products than the groups with three different 434 

products. The latter can be understood from the comparison of the values of accuracy score for 435 

classification of the type of electrocatalyst or products reported in Tables 2 and 3. One would 436 

need more indicators such as the reaction conditions (pH, mass loading of catalyst, production 437 

rate, and concentration) for each reaction in order to have a better performance with the 438 

classification scheme.     439 

 440 

Table 4 lists the performance of predictive analytics using MSE for various experimental 441 

numerical values, i.e., applied potential (AP), current density (CD), and faradaic efficiency 442 

(FE). ETR is seen to have a better predictive capability with a minimum error, which is 443 

considered more accurate than other algorithms. In order to quantitively obtain a prediction 444 

model for FE, AP and CD, BR, GBR, ETR, and RFR algorithms were employed. Models were 445 

based on the training data (80% of the full dataset), where 20% of that is used to evaluate the 446 

test data.   447 

The scatter plot of the outputs versus the actual values for the training, testing, and overall data 448 

sets using RFR and ETR algorithms are presented in Figure 4. The  coefficient of determination 449 

(R2) indicates a strong correlation between outputs for  CD and AP and actual values. The AP, 450 



 

 

15 

CD, and FE results clearly show excellent agreement between the actual values and RFR, GBR, 451 

and ETR predictions, with R2 > 0.90 and MSE < 0.008 for all of the ensemble modeling cases. 452 

The R2 and MSE of test data for faradaic efficiency with ETR and RFR have better performance 453 

than that for other regressors.   454 

 455 

Success with ML agorithms depends on the number of descriptors and their correlations, as 456 

well as available large training data. The true benefit of structure-property relationships 457 

revealed through ML models lies in the  multi-variant correlations and their interpretation in 458 

terms of the fundamental materials properties.  459 

 460 

The missing values in the primary database can nonetheless be filled with values extrapolated 461 

from ML by building a model that relates the known indicators of materials to target properties. 462 

Our ML model has successfully predicted different properties like FE or CD, or classification 463 

of the type of electrocatalyst, or major products related to specific tyoe of catalyst. The latter 464 

process has been carried out iteratively. After filling missing values, the database is ready to 465 

screen the electrocatalyst performance through means of analytical and visualization tools.  466 

 467 

Utilizing all available and supplemented databases, rapid screening of electrocatalyst material 468 

was carried out, while the user was able to specify target values for various properties. The 469 

optimization algorithm proposed in this work uses a scoring factor based on a rank-ordering 470 

approach.  The best electrocatalyst material for given chemical products was then estimated for 471 

a class of materials or products. Figure 5 shows the radar charts of the best electrocatalyst 472 

material based on the target attributes selected by users or directly from a global target, which 473 

is set as default. The chart indicates that Pt should be the catalyst of choice when no specific 474 

fuel products are considered.  475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 
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3.3 High-temperature Electrocatalyst Materials 484 

Despite recent advances and development of electrolytic processes for CO2 conversion at high 485 

temperature (> 800 o C), the overall efficiency and performance of the system remain far from 486 

understood for commercialization and practical usage.43 Among the technological 487 

shortcomings are low conversion efficiency and high degradation rates of materials and 488 

components, including membrane and electrocatalysts. The latter is mainly due to the fact that 489 

the high catalytic conversion will inherently result in low electrochemical stability of catalyst 490 

materials at higher temperatures. The fundamental understanding of the elementary kinetic 491 

processes involved in CO2 electrochemical conversion at high temperatures is a subject of 492 

ongoing research.34 Notably, the cost-effectiveness of the catalytic process at high temperatures 493 

primarily depends upon trade-offs between the system efficiency and production cost of the 494 

fuel, while the operating condition of the solid oxide electrolyzer cells (SOECs) remains very 495 

narrow due to high heat requirements and sensitivity to temperature fluctuations.35 CO is the 496 

major carbonated product as all other competing chemical reaction products are desorbed from 497 

the surface to produce CO at high temperatures. Therefore, additional down-stream processes 498 

need to be considered in order to achieve other products such as methanol.  For co-electrolysis 499 

of CO2 and H2O, SOEC provides high flexibility in the carbon to hydrogen ratio (C/H) and, 500 

thus, state-of-the-art technologies such as Fischer Tropsch (FT) synthesis can be utilized at 501 

downstream for achieving high product flexibility. 45,46  502 

 503 

Here, we present preliminary results and discussions for data-driven analysis of selected 504 

electrocatalyst systems in SOECs that addresses a few of the above technological challenges. 505 

In high-temperature electrolysis of CO2, the co-electrolysis process in the presence of steam is 506 

taking place at temperatures >600 °C. High-temperature CO2 electrochemical conversion using 507 

SOEC generally has a better selectivity compared to that at low temperatures. Correlations 508 

among AP, CD and FE at low or high temperature are not known yet and require extensive data 509 

analytics. 510 

 511 

The state-of-the-art high-temperature electrocatalyst materials in SOECs contain Ni-YSZ. A 512 

key factor for the stability and activity of these materials at high-temperatures is Ni% in the 513 

range of 40–60%. This range is required to fulfill the catalytic reforming and satisfies the 514 

thermal expansion coefficient match between the catalyst layer and YSZ electrolyte. 43 Similar 515 
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to solid oxide fuel cell (SOFC) electrodes, electrocatalytic reactions in SOECs take place at 516 

triple phase boundaries (TPB) where the Ni phase provides electrons, and YSZ particles offer 517 

the required oxygen ion vacancies for the reduction of adsorbed CO2 and the removal of the 518 

separated oxygen ions, respectively.  519 

 520 

Recent progress and advancement for the high temperate electrochemical reduction of carbon 521 

dioxide suggest that the electrochemical reduction of CO2 in solid oxide electrolysis cells takes 522 

place at high current densities. Degradation rates are higher in electrolysis mode compared to 523 

those in fuel cell mode based on new or enhanced issues such as metal particle migration and/or 524 

oxidation, carbon deposition, grain coarsening, and impurities contamination. This adds 525 

complexities to the choice of electrocatalyst materials and, thus, significant fundamental 526 

research activities. In particular, electrochemical reduction of CO2 in the temperature range of 527 

573–873 K is worth exploring in order to match the temperature levels of electrolysis with 528 

required downstream FT-processes; however, there are no proper material systems for the 529 

electrodes and electrolyte under that temperature regime at the current stage. 530 

 531 

Here we consider a few conventional classes of electrode materials and explore the impact of 532 

ratios and Ni, or Ti on overall catalytic activity via extensive data analytics.  533 

 534 

Figure 3b provides scatter plots and distributed values for applied potential, current density, 535 

and faradaic efficiency for Ti and Ni-YSZ catalyst systems. Ti-based electrocatalyst exhibits 536 

different dependencies for applied potential and faradaic efficiency compared to that for the 537 

Ni-YSZ system, while both catalyst materials are relatively similar correlations in view of 538 

current densities. Overall, the Ti-based catalytic system shows high correlations among FE and 539 

CD, in particular in the range of data obtained at higher applied potentials ranges (> 2 V). 540 

Figure 3a and 3b clearly reveal differences in the correlations among key attributes such as FE 541 

and AP among catalysts at low and high temperatures.  The correlations are more pronounced 542 

among FE and applied potential for high-temperature electrocatalyst, whereas CD and AP are 543 

the main indicators at low temperatures. Among all electrocatalyst materials studied at high 544 

temperature, Ni-YSZ shows the highest correlation between FE and AP, although the 545 

correlation factors can vary depending upon Ni ratios and type of electrolytes or products, as 546 

illustrated in binary correlations in Figure 6.   547 
 548 
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The dataset for high-temperature catalysts consists of 180 test data points distributed among 549 

five different catalysts types. This amount of data is insufficient for accurate prediction of 550 

missing properties in the data set, and thus further predictions using ML techniques and 551 

identification thereof are not feasible based on the existing size of the dataset. Moreover, the 552 

atomic ratios of the composite electrocatalysts are not taken into consideration in these 553 

databases. The current results, however, will be expanded in the future to further insights for 554 

the correlation of key attributes at high-temperatures using larger and more diverse training 555 

and test data sets. 556 

 557 
3.4 Recommendation and Decision System558 

Here, we only focused on high-level correlations among selected indicators. Supplementary 559 

Table 2 (Supplementary Materials) provides the complete test data and other operational 560 

conditions that are assumed for each data point. The type of electrolyte is another important 561 

factor to be considered as it influences the extend of correlations among FE and AP for various 562 

high-temperature electrolysis technologies and the respective electrocatalysts. In particular, 563 

future work can include the analysis for the following use cases and comparison based on phase 564 

ratios and catalyst types such as Ag, Ni|YSZ or Ag|YSZ and for at least one cell configuration 565 

such as Ag/GDC|YSZ|YSZ/LSM|LSM (La 0.8 Sr 0.2 Cr 0.5 Mn 0.5 O 3 −δ(LSCM)). Further 566 

analysis is still ongoing to improve the test and training databases for high-temperature catalyst 567 

and provide a robust recommendation framework for this system. Here, the analysis is 568 

primarily built upon existing and extracted historical data. There is an emerging need for 569 

employing sophisticated decision algorithms and recommendation systems to “close-the-loop”. 570 

Such algorithms are emerged from predictive models of key materials properties under 571 

different experimental conditions or modeling assumptions. They also identify weighting 572 

factors that govern specifications and limitations imposed at the components and device-level 573 

integration of new materials. Such algorithms are trained over time as more historical data and 574 

use cases become available. 575 

 576 

4. Conclusions 577 
The discovery and optimization of electrocatalyst materials are driven in large part by 578 
collecting and analyzing various experimental data. The ML-assisted development of 579 
real electrocatalysts is still an emerging field despite its success in molecular and 580 
material science; it cannot yet lead directly to novel electrocatalyst design.  581 
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In this article, we proposed a recommendation framework for the benchmarking of 582 
existing electrocatalyst materials. A multi-attribute decision process was adopted, which 583 
was mapped on radar charts, from which the analysis of best-performed electrocatalyst 584 
is carried out based on user-entry or global technological targets. This recommendation 585 
framework provides the choice of dimensions, indicators, and appropriate correlations 586 
for benchmarking purposes and for assessing the electrocatalyst materials screenings 587 
process, purely based on historical data. With the availability of reliable process and 588 
materials cost data, the latter can lead to comprehensive techno-economic insights into 589 
what performance levels are required for commercially viable electrocatalytic reactions 590 
within the clean energy sector. 591 
We used ML to supplement missing values in CO2RR databases prior to deploying ML 592 
algorithms to identify the best catalytic system with the highest overall performance. 593 
The ML module is primarily built for the classification and prediction of electrocatalyst 594 
materials. Different models for classification of the type of electrocatalyst materials and 595 
chemical products are used with reasonable accuracy within the limit of available test 596 
and training data. Among different regression algorithms, the Random Forest model had 597 
a better capability for the prediction of electrochemical indicators. The proposed 598 
recommendation system provides interactive visual analysis of different indicators for 599 
the exploration of uploaded electrocatalyst data. High-level correlation analytics was 600 
also provided for catalyst materials at high temperatures, and the intensity of 601 
correlations are compared to that for catalyst materials at low temperature.  602 

Finally, rapid screening and benchmarking studies of electrocatalyst material via data-driven 603 

visualization can significantly reduce the discovery time for the best catalyst materials and to 604 

understand or compare vital performance trends and correlations for given classes of materials 605 

from initial discovery, to component or device integration and for full-scale component or 606 

device production.  The major limitations of the framework presented here are the lack of 607 

available datapoints, un-clarity or lack of consistency around key numerical or categorical 608 

attributes, and missing values for the attributes that are collected from the literature. The 609 

framework, however, can be applied to other sustainable electrochemical processes such as 610 

electrochemical NH3 synthesis through N2 and H2O electrolysis.  611 
The interactive visualization tools, assist researchers in discovering trends and patterns 612 
hidden with the electrocatalyst material based on historical experimental and modeling 613 
data. Further ML and analytics functionalities are currently under development, which 614 
will offer higher accuracy and better inter-operability of the recommendation 615 
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framework for idea-creation and screening state-of-the-art electrocatalyst materials for 616 
various applications.   617 
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Figure 1.  The workflow of the cognitive material identification system 743 
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Figure 2.  Flowchart of material identification framework 758 
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Figure 3. Scatter plot matrix showing the data distribution for a) both High-T and low-T b) 762 

High-T, c) Low-T of CO2RR according to 3 performance metrics. The elements in the 763 

diagonal (upper left to lower right) represent the respected range of data points for each 764 

catalyst type. 765 
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Figure 4. The actual Faradaic efficiency, applied potential, and Current density values 812 

compared with the predicted values using Random Forest regression and Extra Tree 813 

regression models.  The coefficient of determination (R2) and mean squared error (MSE) are 814 

computed to estimate the prediction errors. The test and training points are shown in blue and 815 

red, respectively. The perfect correlation line is included for reference as a green line. 816 

 817 
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Figure 5. Screenshot of radar chart for CO2 reduction to fuels of Pt-based on different 818 

classification of electrocatalysts and selected target values by default global (blue) or user-819 

entry (brown) targets. 820 
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Figure 6.  Binary correlations among key attributes (a) FE-electrolyte, (b) FE-product, 838 
(c) FE-current density for sample extracted datasets of electrocatalyst materials at low 839 
and high temperature.  840 
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Table 1. Key performance indicators and their types or range of values as being set in the 878 

data extraction process. 879 

 880 
Descriptors   Range or types Units 

Catalyst Cu, Ag, Ni, Ti  

Applied Potential  -1.45 to 5.3 V 

Current Density 0.00058-856 mA/cm2 

Faradaic Efficiency  0 to100 - 

Type of Electrolyte KOH, KCl 

KHCO3, 

CsHCO3, 

YSZ, Li2O-Li2CO3 

 

Major products CO, H2, 

CH3COOH 

C2H5OH, 

C3H7OH 

 

 

Temperature  25 to 900 ˚C 

 881 
 882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
 890 
 891 
 892 
 893 
 894 
 895 
 896 
 897 
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 898 
 899 
 900 
 901 
Table 2. The results of cross-validation with six different classification algorithms 902 
against low-temperature catalyst types in four classes (Cu wire, Oxide-derived Cu 1, 903 
Oxide-derived Cu 2, Cu nanoparticles) 904 
 905 
Catalysts: Cu wire, Oxide-derived Cu 1, Oxide-derived Cu 2, Cu nanoparticles 

ML Algorithms Average score (%) 

Logistic Regression (LR) 0.81 
Linear Discriminant Analysis (LDA) 0.81 
Quadratic Discriminant Analysis (QDA) 0.32 
k-Nearest neighbors Classifier (KNN) 0.68 
Random Forest Classifier (RFC) 0.71 
Gaussian NB (GNB) 0.61 

 906 
 907 
 908 
 909 
 910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
 920 
 921 
 922 
 923 
 924 
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 925 
 926 
Table 3. The results of cross-validation with six different classification algorithms 927 
against the type of products in three classes (a group of [CH4, C2H4, C2H5OH], [CH4, 928 
C2H5OH, C3H7OH], and [CH4, C2H5OH]) 929 
 930 

Average score (%) 

ML Algorithms 
CH4, C2H4, 

C2H5OH 
CH4, C2H5OH, 

C3H7OH 
CH4, 

C2H5OH 

Logistic Regression (LR) 0.39 0.20 0.80 

Linear Discriminant Analysis (LDA) 0.52 0.15 0.93 

Quadratic Discriminant Analysis 
(QDA) 0.43 0.51 0.60 

 k-Nearest neighbors Classifier (KNN) 0.48 0.65 0.73 

Random Forest Classifier (RFC) 0.70 0.71 1 

Gaussian NB (GNB) 0.52 0.45 0.26 

 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
 943 
 944 



 
 

  

945 
Table 4. Evaluation of predictive algorithms for applied potential, faradic efficiency and current density 946 
 947 

 948 
 949 
 950 
 951 

 952 

 953 

 Statistical 
Technique 

Bagging Regression 
(BR) 

Random Forest 
Regression (RFR) 

Gradient Boosting 
Regression (GBR) 
 

Extra Trees Regression 
(ETR) 

Features n/a Training Test Training Test Training Test Training Test 

Applied Potential(V vs 
RHE) 

 
MSE 

1.17E-03 6.15E-03 5.30E-04 3.18E-03 8.14E-04 2.96E-03 6.31E-06 2.66E-03 

 R2 0.97 0.88 0.98 0.94 0.98 0.94 0.99 0.94 
Current 
Density(mA.cm-2) 

 
MSE 

9.30E-04 7.06E-03 9.76E-04 5.87E-03 1.11E-03 5.42E-03 4.45E-08 4.82E-03 

 R2 0.98 0.88 0.98 0.90 0.98 0.91 0.99 0.91 
Faradaic Efficiency(%)  

MSE 
2.44E-03 7.30E-03 1.86E-03 6.22E-03 7.17E-03 8.35E-03 2.56E-31 5.38E-03 

Overall R2 0.98 0.95 0.98 0.96 0.95 0.94 1 0.96 


