Test of Standard Model and Search for Physics Beyond

Opportunities for Fundamental Physics using Small-scale Storage Ring Exp'ts

Frank Rathmann Institut für Kernphysik, Forschungszentrum Jülich, Germany

Rare Processes and Precision Frontier Townhall Meeting

October 2, 2020

Zoom meeting: https://indico.fnal.gov/event/45713/

The physics / basic idea of the LOI¹

Goal:

Investigation of symmetries of SM & Cosmology (P, T and CP; PQ (Peccei-Quinn)), using polarized charged particles and precision storage rings:

- ▶ P-V and T-V (CP-V): Electric Dipole Moments of particles $(p, d, {}^{3}\text{He}) \Leftrightarrow$ Baryon asymmetric Universe
- ▶ PQ: Oscillating EDMs ⇔ Axion/ALP ⇔ Dark Matter
- ► T-V and P-C: microscopic T-violation

Communities:

- nuclear/hadron (polarized beams, targets, polarimetry, . . .)
- particle and astroparticle physics (particle property, beyond SM particles, baryogenesis, ...)
- accelerator (precision storage rings, . . .)

Frontiers:

Rare Precision and Accelerator Physics

What is required for the LOI to succeed?

Proton EDM: goal sensitivity: 1×10^{-29} e cm

- ▶ All-electric storage ring with polarized CW and CCW beams:
 - ► ≈ 700 MeV/c (magic momentum, frozen spin)
 - spin-coherence time > 1000 s
 - non-destructive sampling polarimetry, . . .
- Also used for axion/ALP search (oscillating EDM)
- Strategy: staged approach

Stage 1

precursor exp't

Stage 2

Stage 3

dedicated ring

Deuteron EDM:

▶ Storage ring with combined E- and B-fields required

What do you plan to do during Snowmass?

Submission of contributed paper based on CERN Yellow Report²:

 Storage Ring to Search for Electric Dipole Moments of Charged Particles – Feasibility Study

Continuation of work on design of prototype ring:

- ▶ All-electric (non-magic momentum): 1^{st} stage \Rightarrow R&D
- ▶ **combined** E/B: 2nd stage \Rightarrow science
- Host site independent

Timeline:

▶ now (COSY) +5 yrs (prototype) +10 yrs (final ring)

²F. Abusaif et al., https://arxiv.org/abs/1912.07881 (2019).

What do you hope to get out of Snowmass?

- Strong endorsement of science case
 - ▶ like in Update of European Strategy for Particle Physics (ESPP), June 2020³
- Support toward unification of international efforts

³see Deliberation Document on 2020 Update of ESPP, The European Strategy Group, http://cds.cern.ch/record/2721371/files/CERN-ESU-016-2020%20Deliberation% 20Document%20European%20Strategy.pdf

Challenges

Prototype ring (Stage 2):

- All-electric ring (high field, field homogeneity and stability)
- ► *E*/*B* combined bending
- Storage time
- CW-CCW injection and operation
- Spin-coherence time in electric machine
- Polarimetry (efficient, sampling, non-destructive)
- Optimum orbit control
- Systematic effects from magnetic moments
- Multi-bunch approach to co-magnetometry
- Stochastic cooling

Conclusion

Test of Standard Model and Search for Physics Beyond

- Excellent perspectives for nuclear/hadron, astroparticle physics and accelerator technology
- ► Search for static charged particle EDMs (p, d, ³He)
 - ightharpoonup EDMs ightharpoonup probes of CP-violating interactions
 - Matter-antimatter asymmetry of the Universe
- Search for oscillating EDMs
 - Axion-gluon coupling
 - Dark matter search
- Staged approach with prototype EDM storage ring to face challenges in accelerator technology:
 - Primary purpose of PTR
 - ▶ Resolve open issues before precision EDM ring is targeted in Stage 3
 - host sites considered: CERN or COSY