000890436 001__ 890436
000890436 005__ 20230310131355.0
000890436 0247_ $$2doi$$a10.1038/s41598-020-80324-y
000890436 0247_ $$2Handle$$a2128/27127
000890436 0247_ $$2pmid$$a33436943
000890436 0247_ $$2WOS$$aWOS:000621921300001
000890436 037__ $$aFZJ-2021-00955
000890436 082__ $$a600
000890436 1001_ $$0P:(DE-HGF)0$$aLinkhorst, John$$b0
000890436 245__ $$aTemplating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane
000890436 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2021
000890436 3367_ $$2DRIVER$$aarticle
000890436 3367_ $$2DataCite$$aOutput Types/Journal article
000890436 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612771099_333
000890436 3367_ $$2BibTeX$$aARTICLE
000890436 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890436 3367_ $$00$$2EndNote$$aJournal Article
000890436 520__ $$aFilter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.
000890436 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890436 536__ $$0G:(GEPRIS)221475706$$aSFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)$$c221475706$$x1
000890436 588__ $$aDataset connected to CrossRef
000890436 7001_ $$0P:(DE-HGF)0$$aLölsberg, Jonas$$b1
000890436 7001_ $$0P:(DE-HGF)0$$aThill, Sebastian$$b2
000890436 7001_ $$0P:(DE-HGF)0$$aLohaus, Johannes$$b3
000890436 7001_ $$0P:(DE-HGF)0$$aLüken, Arne$$b4
000890436 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b5$$ufzj
000890436 7001_ $$0P:(DE-HGF)0$$aWessling, Matthias$$b6$$eCorresponding author
000890436 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-80324-y$$gVol. 11, no. 1, p. 812$$n1$$p812$$tScientific reports$$v11$$x2045-2322$$y2021
000890436 8564_ $$uhttps://juser.fz-juelich.de/record/890436/files/s41598-020-80324-y.pdf$$yOpenAccess
000890436 909CO $$ooai:juser.fz-juelich.de:890436$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b5$$kFZJ
000890436 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000890436 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890436 9141_ $$y2021
000890436 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890436 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890436 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000890436 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000890436 920__ $$lyes
000890436 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000890436 980__ $$ajournal
000890436 980__ $$aVDB
000890436 980__ $$aUNRESTRICTED
000890436 980__ $$aI:(DE-Juel1)IBI-4-20200312
000890436 9801_ $$aFullTexts