Hauptseite > Publikationsdatenbank > Materials Screening for Disorder‐Controlled Chalcogenide Crystals for Phase‐Change Memory Applications > print |
001 | 890442 | ||
005 | 20210623133451.0 | ||
024 | 7 | _ | |a 10.1002/adma.202006221 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a 2128/27403 |2 Handle |
024 | 7 | _ | |a altmetric:98663911 |2 altmetric |
024 | 7 | _ | |a 33491816 |2 pmid |
024 | 7 | _ | |a WOS:000611855400001 |2 WOS |
037 | _ | _ | |a FZJ-2021-00958 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Xu, Yazhi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Materials Screening for Disorder‐Controlled Chalcogenide Crystals for Phase‐Change Memory Applications |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1617693382_24456 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Tailoring the degree of disorder in chalcogenide phase‐change materials (PCMs) plays an essential role in nonvolatile memory devices and neuro‐inspired computing. Upon rapid crystallization from the amorphous phase, the flagship Ge–Sb–Te PCMs form metastable rocksalt‐like structures with an unconventionally high concentration of vacancies, which results in disordered crystals exhibiting Anderson‐insulating transport behavior. Here, ab initio simulations and transport experiments are combined to extend these concepts to the parent compound of Ge–Sb–Te alloys, viz., binary Sb2Te3, in the metastable rocksalt‐type modification. Then a systematic computational screening over a wide range of homologous, binary and ternary chalcogenides, elucidating the critical factors that affect the stability of the rocksalt structure is carried out. The findings vastly expand the family of disorder‐controlled main‐group chalcogenides toward many more compositions with a tunable bandgap size for demanding phase‐change applications, as well as a varying strength of spin–orbit interaction for the exploration of potential topological Anderson insulators. |
536 | _ | _ | |a 523 - Neuromorphic Computing and Network Dynamics (POF4-523) |0 G:(DE-HGF)POF4-523 |c POF4-523 |x 0 |f POF IV |
536 | _ | _ | |a Ab initio study of liquid-liquid phase transitions in semiconductors and phase-change materials (jara0207_20191101) |0 G:(DE-Juel1)jara0207_20191101 |c jara0207_20191101 |x 1 |f Ab initio study of liquid-liquid phase transitions in semiconductors and phase-change materials |
536 | _ | _ | |a Ab initio study of the electronic and kinetic properties of clean and Scandium-alloyed Sb2Te3 (jara0183_20180501) |0 G:(DE-Juel1)jara0183_20180501 |c jara0183_20180501 |x 2 |f Ab initio study of the electronic and kinetic properties of clean and Scandium-alloyed Sb2Te3 |
536 | _ | _ | |a Ab initio investigation of the structure-dynamics relation in phase-change materials (jara0198_20190501) |0 G:(DE-Juel1)jara0198_20190501 |c jara0198_20190501 |x 3 |f Ab initio investigation of the structure-dynamics relation in phase-change materials |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wang, Xudong |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Zhang, Wei |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schäfer, Lisa |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Reindl, Johannes |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a vom Bruch, Felix |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Zhou, Yuxing |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Evang, Valentin |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wang, Jiang-Jing |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Deringer, Volker L. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ma, En |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Wuttig, Matthias |0 P:(DE-Juel1)176716 |b 11 |e Corresponding author |
700 | 1 | _ | |a Mazzarello, Riccardo |0 0000-0003-2319-375X |b 12 |
773 | _ | _ | |a 10.1002/adma.202006221 |g p. 2006221 - |0 PERI:(DE-600)1474949-x |n 9 |p 2006221 - |t Advanced materials |v 33 |y 2021 |x 1521-4095 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890442/files/adma.202006221.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890442 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)176716 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Electron Charge-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-10-13 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-10-13 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-10-13 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|