000890447 001__ 890447
000890447 005__ 20230522110533.0
000890447 0247_ $$2doi$$a10.3390/cancers13040647
000890447 0247_ $$2Handle$$a2128/27130
000890447 0247_ $$2altmetric$$aaltmetric:99658306
000890447 0247_ $$2pmid$$a33562803
000890447 0247_ $$2WOS$$aWOS:000623385200001
000890447 037__ $$aFZJ-2021-00963
000890447 041__ $$aEnglish
000890447 082__ $$a610
000890447 1001_ $$0P:(DE-Juel1)181076$$aGutsche, Robin$$b0
000890447 245__ $$aEvaluation of FET PET Radiomics Feature Repeatability in Glioma Patients
000890447 260__ $$aBasel$$bMDPI$$c2021
000890447 3367_ $$2DRIVER$$aarticle
000890447 3367_ $$2DataCite$$aOutput Types/Journal article
000890447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652095873_3556
000890447 3367_ $$2BibTeX$$aARTICLE
000890447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890447 3367_ $$00$$2EndNote$$aJournal Article
000890447 520__ $$aAmino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test–retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91–1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.
000890447 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890447 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1
000890447 588__ $$aDataset connected to CrossRef
000890447 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b1
000890447 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b2
000890447 7001_ $$0P:(DE-HGF)0$$aBousabarah, Khaled$$b3
000890447 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b4
000890447 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b5
000890447 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b6$$ufzj
000890447 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b7
000890447 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b8$$eCorresponding author
000890447 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers13040647$$gVol. 13, no. 4, p. 647 -$$n4$$p647 -$$tCancers$$v13$$x2072-6694$$y2021
000890447 8564_ $$uhttps://juser.fz-juelich.de/record/890447/files/Invoice_MDPI_cancers-1066599_1731.80EUR.pdf
000890447 8564_ $$uhttps://juser.fz-juelich.de/record/890447/files/Gutsche_2020_Cancers_Evaluation%20of%20FET%20PET....pdf$$yOpenAccess
000890447 8767_ $$81066599$$92021-02-02$$d2021-02-11$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200163918
000890447 909CO $$ooai:juser.fz-juelich.de:890447$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181076$$aForschungszentrum Jülich$$b0$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b1$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b2$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b4$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b6$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b7$$kFZJ
000890447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b8$$kFZJ
000890447 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890447 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000890447 9141_ $$y2021
000890447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2018$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000890447 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890447 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2018$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-11
000890447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000890447 920__ $$lyes
000890447 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000890447 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000890447 9801_ $$aFullTexts
000890447 980__ $$ajournal
000890447 980__ $$aVDB
000890447 980__ $$aI:(DE-Juel1)INM-3-20090406
000890447 980__ $$aI:(DE-Juel1)INM-4-20090406
000890447 980__ $$aUNRESTRICTED
000890447 980__ $$aAPC