| Hauptseite > Publikationsdatenbank > Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients > print |
| 001 | 890447 | ||
| 005 | 20230522110533.0 | ||
| 024 | 7 | _ | |a 10.3390/cancers13040647 |2 doi |
| 024 | 7 | _ | |a 2128/27130 |2 Handle |
| 024 | 7 | _ | |a altmetric:99658306 |2 altmetric |
| 024 | 7 | _ | |a 33562803 |2 pmid |
| 024 | 7 | _ | |a WOS:000623385200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-00963 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Gutsche, Robin |0 P:(DE-Juel1)181076 |b 0 |
| 245 | _ | _ | |a Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients |
| 260 | _ | _ | |a Basel |c 2021 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1652095873_3556 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test–retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91–1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology. |
| 536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |x 0 |f POF IV |
| 536 | _ | _ | |a DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie |0 G:(GEPRIS)428090865 |c 428090865 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Scheins, Jürgen |0 P:(DE-Juel1)131791 |b 1 |
| 700 | 1 | _ | |a Kocher, Martin |0 P:(DE-Juel1)173675 |b 2 |
| 700 | 1 | _ | |a Bousabarah, Khaled |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Fink, Gereon Rudolf |0 P:(DE-Juel1)131720 |b 4 |
| 700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 5 |
| 700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 6 |u fzj |
| 700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 7 |
| 700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.3390/cancers13040647 |g Vol. 13, no. 4, p. 647 - |0 PERI:(DE-600)2527080-1 |n 4 |p 647 - |t Cancers |v 13 |y 2021 |x 2072-6694 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/890447/files/Invoice_MDPI_cancers-1066599_1731.80EUR.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/890447/files/Gutsche_2020_Cancers_Evaluation%20of%20FET%20PET....pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:890447 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)181076 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131791 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173675 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131720 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131794 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131777 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)143792 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)145110 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v (Dys-)function and Plasticity |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCERS : 2018 |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-09-11 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-11 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-11 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-11 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-11 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CANCERS : 2018 |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-09-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-11 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|