001     890449
005     20220930130305.0
024 7 _ |a 10.35848/1347-4065/abdc87
|2 doi
024 7 _ |a 0021-4922
|2 ISSN
024 7 _ |a 1347-4065
|2 ISSN
024 7 _ |a 2128/27167
|2 Handle
024 7 _ |a WOS:000614748800001
|2 WOS
037 _ _ |a FZJ-2021-00965
082 _ _ |a 530
100 1 _ |a Kutovyi, Yurii
|0 P:(DE-Juel1)167225
|b 0
|e Corresponding author
245 _ _ |a Single-trap phenomena stochastic switching for noise suppression in nanowire FET biosensors
260 _ _ |a Tokyo
|c 2021
|b Japan Soc. of Applied Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613393923_27724
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the fast-shrinking of the transistor dimensions, the low-frequency noise level considerably increases emerging as an important parameter for the design of advanced devices for information technologies. Single-trap phenomena (STP) is a promising approach for the low-frequency noise suppression technique in nanotransistor biosensors by considering trapping/detrapping noise as a signal. We show a noise reduction mechanism offered by STP in nanoscale devices making the analogy with stochastic resonance effect found in biological systems by considering a single trap as a bistable stochastically driven nonlinear system which transmits and amplifies the weak signals. The STP noise suppression effect is experimentally demonstrated for the fabricated liquid-gated nanosensors exploiting STP. We found the optimal conditions and parameters including optimized gate voltages to implement a stochastic switching effect for the extraction of useful signals from the background noise level. These results should be considered for the development of reliable and highly sensitive nanoscale biosensors.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Madrid, Ignacio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Boichuk, Nazarii
|0 P:(DE-Juel1)171802
|b 2
700 1 _ |a Kim, Soo Hyeon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fujii, Teruo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jalabert, Laurent
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Offenhaeusser, Andreas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 7
700 1 _ |a Clément, Nicolas
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.35848/1347-4065/abdc87
|g Vol. 60, no. SB, p. SBBG03 -
|0 PERI:(DE-600)2006801-3
|n SB
|p SBBG03 -
|t Japanese journal of applied physics
|v 60
|y 2021
|x 1347-4065
856 4 _ |u https://juser.fz-juelich.de/record/890449/files/8169222_0.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890449/files/Kutovyi_2021_Jpn._J._Appl._Phys._60_SBBG03.pdf
909 C O |o oai:juser.fz-juelich.de:890449
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171802
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128738
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-09-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JPN J APPL PHYS : 2018
|d 2020-09-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21