001     890452
005     20210628150955.0
024 7 _ |a 10.1016/j.neuroimage.2021.117833
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/27579
|2 Handle
024 7 _ |a altmetric:99808520
|2 altmetric
024 7 _ |a 33549749
|2 pmid
024 7 _ |a WOS:000656558400009
|2 WOS
037 _ _ |a FZJ-2021-00968
082 _ _ |a 610
100 1 _ |a Fu, Junjun
|0 0000-0002-4139-3811
|b 0
245 _ _ |a Distinct neural networks subserve placebo analgesia and nocebo hyperalgesia
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618296044_11325
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neural networks involved in placebo analgesia and nocebo hyperalgesia processes have been widely investigated with neuroimaging methods. However, few studies have directly compared these two processes and it remains unclear whether common or distinct neural circuits are involved. To address this issue, we implemented a coordinate-based meta-analysis and compared neural representations of placebo analgesia (30 studies; 205 foci; 677 subjects) and nocebo hyperalgesia (22 studies; 301 foci; 401 subjects). Contrast analyses confirmed placebo-specific concordance in the right ventral striatum, and nocebo-specific concordance in the dorsal anterior cingulate cortex (dACC), left posterior insula and left parietal operculum during combined pain anticipation and administration stages. Importantly, no overlapping regions were found for these two processes in conjunction analyses, even when the threshold was low. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity (RSFC) analyses on key regions further confirmed the distinct brain networks underlying placebo analgesia and nocebo hyperalgesia. Together, these findings indicate that the placebo analgesia and nocebo hyperalgesia processes involve distinct neural circuits, which supports the view that the two phenomena may operate via different neuropsychological processes.Keywords: Activation likelihood estimation; Functional decoding; Meta-analysis; Meta-analytic connectivity modeling; Nocebo hyperalgesia; Placebo analgesia; Resting-state functional connectivity.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wu, Shuyi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Cuizhen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Camilleri, Julia
|0 P:(DE-Juel1)172024
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Yu, Rongjun
|0 0000-0003-0123-1524
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2021.117833
|g p. 117833 -
|0 PERI:(DE-600)1471418-8
|p 117833
|t NeuroImage
|v 231
|y 2021
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/890452/files/1-s2.0-S1053811921001105-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890452
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21