000890453 001__ 890453
000890453 005__ 20240625095118.0
000890453 0247_ $$2doi$$a10.3390/molecules26040797
000890453 0247_ $$2Handle$$a2128/27140
000890453 0247_ $$2pmid$$a33557115
000890453 0247_ $$2WOS$$aWOS:000624153100001
000890453 037__ $$aFZJ-2021-00969
000890453 082__ $$a540
000890453 1001_ $$00000-0002-9175-243X$$aManelfi, Candida$$b0
000890453 245__ $$aCombining Different Docking Engines and Consensus Strategies to Design and Validate Optimized Virtual Screening Protocols for the SARS-CoV-2 3CL Protease
000890453 260__ $$aBasel$$bMDPI70206$$c2021
000890453 3367_ $$2DRIVER$$aarticle
000890453 3367_ $$2DataCite$$aOutput Types/Journal article
000890453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839447_21106
000890453 3367_ $$2BibTeX$$aARTICLE
000890453 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890453 3367_ $$00$$2EndNote$$aJournal Article
000890453 520__ $$aThe 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.
000890453 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890453 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000890453 588__ $$aDataset connected to CrossRef
000890453 7001_ $$0P:(DE-Juel1)172836$$aGossen, Jonas$$b1$$ufzj
000890453 7001_ $$00000-0002-5731-3396$$aGervasoni, Silvia$$b2
000890453 7001_ $$00000-0003-4789-0955$$aTalarico, Carmine$$b3
000890453 7001_ $$0P:(DE-Juel1)181061$$aAlbani, Simone$$b4$$ufzj
000890453 7001_ $$0P:(DE-HGF)0$$aPhilipp, Benjamin Joseph$$b5
000890453 7001_ $$00000-0003-0200-1712$$aMusiani, Francesco$$b6
000890453 7001_ $$00000-0002-3939-5172$$aVistoli, Giulio$$b7
000890453 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b8
000890453 7001_ $$00000-0001-6830-2695$$aBeccari, Andrea Rosario$$b9
000890453 7001_ $$00000-0001-5916-2029$$aPedretti, Alessandro$$b10$$eCorresponding author
000890453 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules26040797$$gVol. 26, no. 4, p. 797 -$$n4$$p797 -$$tMolecules$$v26$$x1420-3049$$y2021
000890453 8564_ $$uhttps://juser.fz-juelich.de/record/890453/files/molecules-26-00797.pdf$$yOpenAccess
000890453 909CO $$ooai:juser.fz-juelich.de:890453$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172836$$aForschungszentrum Jülich$$b1$$kFZJ
000890453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181061$$aForschungszentrum Jülich$$b4$$kFZJ
000890453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b8$$kFZJ
000890453 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890453 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000890453 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000890453 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000890453 9141_ $$y2021
000890453 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000890453 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890453 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2018$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890453 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-26
000890453 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000890453 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
000890453 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000890453 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x2
000890453 980__ $$ajournal
000890453 980__ $$aVDB
000890453 980__ $$aI:(DE-Juel1)INM-9-20140121
000890453 980__ $$aI:(DE-Juel1)JSC-20090406
000890453 980__ $$aI:(DE-Juel1)IAS-5-20120330
000890453 980__ $$aUNRESTRICTED
000890453 9801_ $$aFullTexts