000890455 001__ 890455
000890455 005__ 20240712113121.0
000890455 0247_ $$2doi$$a10.1149/1945-7111/ab7fb5
000890455 0247_ $$2ISSN$$a0013-4651
000890455 0247_ $$2ISSN$$a0096-4743
000890455 0247_ $$2ISSN$$a0096-4786
000890455 0247_ $$2ISSN$$a1945-6859
000890455 0247_ $$2ISSN$$a1945-7111
000890455 0247_ $$2ISSN$$a2002-2015
000890455 0247_ $$2ISSN$$a2156-7395
000890455 0247_ $$2Handle$$a2128/27378
000890455 0247_ $$2WOS$$aWOS:000522880100002
000890455 037__ $$aFZJ-2021-00971
000890455 082__ $$a660
000890455 1001_ $$0P:(DE-Juel1)171270$$aBorzutzki, Kristina Kerstin$$b0
000890455 245__ $$aImproving the NMC111∣ Polymer Electrolyte Interface by Cathode Composition and Processing
000890455 260__ $$aBristol$$bIOP Publishing$$c2020
000890455 3367_ $$2DRIVER$$aarticle
000890455 3367_ $$2DataCite$$aOutput Types/Journal article
000890455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615546336_6321
000890455 3367_ $$2BibTeX$$aARTICLE
000890455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890455 3367_ $$00$$2EndNote$$aJournal Article
000890455 520__ $$aDespite significant improvements of polymer electrolyte properties, the interfaces towards the electrodes often yield high interfacial resistances due to poor contacts, which are bottlenecks for application of newly developed polymer, ceramic or composite electrolytes in lithium metal batteries (LMBs). Herein, the impact of processing as well as slurry composition of LiNi1/3Co1/3Mn1/3O2 (NMC111) based composite cathodes on the achievable electrochemical C-rate performance of LMBs based on quasi-solid single ion conducting polymer electrolytes (SIPE) is demonstrated. Composite cathodes with varying types and amounts of lithiated species are fabricated and systematically compared. Among all considered electrodes, cathodes with an addition of 5 wt% lithiated terephthalic acid (TA Li) yield the highest discharge capacity of 91 mAhg−1 at 1 C for Li metalmidSIPEmidNMC111 cells. Furthermore, similar cells operated with cathodes whose pores are impregnated with 5 wt% SIPE via drop/spin coating even provide a specific discharge capacity of 113 mAhg−1 at 1 C, thereby clearly highlighting the benefit of the selected processing strategy to realize cathodes with substantially improved charge carrier transport networks.
000890455 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000890455 588__ $$aDataset connected to CrossRef
000890455 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b1$$eCorresponding author
000890455 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b2$$eCorresponding author
000890455 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ab7fb5$$gVol. 167, no. 7, p. 070546 -$$n7$$p070546$$tJournal of the Electrochemical Society$$v167$$x0013-4651$$y2020
000890455 8564_ $$uhttps://juser.fz-juelich.de/record/890455/files/2020_Borzutzki_JES-1.pdf$$yOpenAccess
000890455 909CO $$ooai:juser.fz-juelich.de:890455$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171270$$aForschungszentrum Jülich$$b0$$kFZJ
000890455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b1$$kFZJ
000890455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b2$$kFZJ
000890455 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890455 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890455 9141_ $$y2021
000890455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-05
000890455 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890455 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000890455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000890455 920__ $$lyes
000890455 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000890455 9801_ $$aFullTexts
000890455 980__ $$ajournal
000890455 980__ $$aVDB
000890455 980__ $$aUNRESTRICTED
000890455 980__ $$aI:(DE-Juel1)IEK-12-20141217
000890455 981__ $$aI:(DE-Juel1)IMD-4-20141217