001     890455
005     20240712113121.0
024 7 _ |a 10.1149/1945-7111/ab7fb5
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2002-2015
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 2128/27378
|2 Handle
024 7 _ |a WOS:000522880100002
|2 WOS
037 _ _ |a FZJ-2021-00971
082 _ _ |a 660
100 1 _ |a Borzutzki, Kristina Kerstin
|0 P:(DE-Juel1)171270
|b 0
245 _ _ |a Improving the NMC111∣ Polymer Electrolyte Interface by Cathode Composition and Processing
260 _ _ |a Bristol
|c 2020
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615546336_6321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite significant improvements of polymer electrolyte properties, the interfaces towards the electrodes often yield high interfacial resistances due to poor contacts, which are bottlenecks for application of newly developed polymer, ceramic or composite electrolytes in lithium metal batteries (LMBs). Herein, the impact of processing as well as slurry composition of LiNi1/3Co1/3Mn1/3O2 (NMC111) based composite cathodes on the achievable electrochemical C-rate performance of LMBs based on quasi-solid single ion conducting polymer electrolytes (SIPE) is demonstrated. Composite cathodes with varying types and amounts of lithiated species are fabricated and systematically compared. Among all considered electrodes, cathodes with an addition of 5 wt% lithiated terephthalic acid (TA Li) yield the highest discharge capacity of 91 mAhg−1 at 1 C for Li metalmidSIPEmidNMC111 cells. Furthermore, similar cells operated with cathodes whose pores are impregnated with 5 wt% SIPE via drop/spin coating even provide a specific discharge capacity of 113 mAhg−1 at 1 C, thereby clearly highlighting the benefit of the selected processing strategy to realize cathodes with substantially improved charge carrier transport networks.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 1
|e Corresponding author
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 2
|e Corresponding author
773 _ _ |a 10.1149/1945-7111/ab7fb5
|g Vol. 167, no. 7, p. 070546 -
|0 PERI:(DE-600)2002179-3
|n 7
|p 070546
|t Journal of the Electrochemical Society
|v 167
|y 2020
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/890455/files/2020_Borzutzki_JES-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890455
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172047
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21