TUNE AND CHROMATICITY MEASUREMENT AT COSY

JUNE 24TH, 2020 I BERND BREITKREUTZ AND PHILIPP NIEDERMAYER

OUTLINE

- tuneSweep
- fastTune
- fastTune Continuous tune measurement
- fastTune Chromaticity

TUNE SWEEP SYSTEM

- New name for the well established tune measurement system at COSY
- Coasting beam (allows for higher BPM gain)
- Setup: Network analyzer excites betatron oscillations via stripline electrodes, measures beam feedback via BPM
- Typical tune: Q=3.5 .. 3.7 in both x and y
- Measure |s21| from 1.5 to 1.7 times revolution frequency
- Peaks are at (1+q)f_{rev} -> Q=3+q

TUNE SWEEP HARDWARE

Network Analyzer: HP4396A

Excitation: "Stripline Unit"

Control, Power Amplifiers Electrodes (inside magnet)

Measurement: BPM 9

TUNE SWEEP GUI

https://gitlab.cce.kfa-juelich.de/BCC/Tune/tuneSweep/HP-GUI

NEW BPM READOUT: THE LIBERA HADRON

- ADCs
 - 250MHz sampling frequency
 - 16bit
- Built-in EPICS IOC

Figure 3: Bunch detection
From: Libera Hadron User Manual

- Bunch detection
 - one (x,y) per revolution ("Bunch-by-Bunch"-data"
 - Slow BbB-data (10Hz, averaged) for Orbit measurement
 - All BbB-data since last trigger are written to 2GB memory (roughly 67M values, or 90 seconds at 750kHz)

FAST TUNE SYSTEM

FAST TUNE HARDWARE

Excitation:
AFG3021C
Function Generator

Measurement: All BPMs, Liberas

FAST TUNE GUI

Fit results of all BPMs

(Identify suited BPMs, deactivate others)

Setup excitation

Tune diagram of all active BPMs and their mean values

Results of one BPM (here DPOS 8)

CONTINUOUS TUNE MEASUREMENT

- Track tune during acceleration
- Straight forward with fastTune, since no need to log a PLL on or to normalize by f_{rev}(t)
- Challenges:
 - Rigidity increases
 - Revolution frequency changes, sidebands may leave noise band limits
 - Many data, longer readout times

FAST TUNE SPECTROGRAM GUI

CHROMATICITY WITH FAST TUNE

Idea

- Use fastTune for automated chromaticity measurements
- This should allow for multiple chromaticity measurements in longer cycles

Method

- Measure tune during frequency sweeps
- Calculate tune change with respect to frequency change
- Result: Chromaticity, divided by frequency slip factor

Status

- New frequency sweep method implemented
- Analysis software written and tested (to some extend)
- No successful (reproducible) chromaticity measurement yet
- Tests under JEDI conditions (970MeV/c deuterons, cooled beam, OC) planned for engineering run in calendar week 33 (from Monday, 2020/08/10)

FREQUENCY MULTI-JUMPS

FAST TUNE CHROMATICITY MEASUREMENT GUI

COMPARISON

Tune Sweep

- Well established system
- Tune of unbunched beam (higher BPM gain)
- High spectral power density, thus good signals at high energies / uncooled beam
- Slower system
- Measurement at one single BPM.
 Spurious signal distinction sometimes hard

Fast Tune

- Tune of bunched beams
- No need to measure revolution frequency
- Allows for fast, multiple and continuous measurements (thus tune in ramps, chromaticity)
- Spectral power density smeared over broader band, thus less suited for uncooled beams at higher energies
- Simultaneous measurement at all available BPMs increases confidence in results

