001     890479
005     20220228143453.0
024 7 _ |2 doi
|a 10.3389/fnins.2020.536596
024 7 _ |2 ISSN
|a 1662-453X
024 7 _ |2 ISSN
|a 1662-4548
024 7 _ |2 Handle
|a 2128/27138
024 7 _ |2 altmetric
|a altmetric:97893837
024 7 _ |2 pmid
|a 33536865
024 7 _ |2 WOS
|a WOS:000613265600001
037 _ _ |a FZJ-2021-00989
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)137076
|a Oberwelland Weiss, E.
|b 0
|e Corresponding author
245 _ _ |a Developmental Differences in Probabilistic Reversal Learning: A Computational Modeling Approach
260 _ _ |a Lausanne
|b Frontiers Research Foundation
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1646041653_5297
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Cognitive flexibility helps us to navigate through our ever-changing environment and has often been examined by reversal learning paradigms. Performance in reversal learning can be modeled using computational modeling which allows for the specification of biologically plausible models to infer psychological mechanisms. Although such models are increasingly used in cognitive neuroscience, developmental approaches are still scarce. Additionally, though most reversal learning paradigms have a comparable design regarding timing and feedback contingencies, the type of feedback differs substantially between studies. The present study used hierarchical Gaussian filter modeling to investigate cognitive flexibility in reversal learning in children and adolescents and the effect of various feedback types. The results demonstrate that children make more overall errors and regressive errors (when a previously learned response rule is chosen instead of the new correct response after the initial shift to the new correct target), but less perseverative errors (when a previously learned response set continues to be used despite a reversal) adolescents. Analyses of the extracted model parameters of the winning model revealed that children seem to use new and conflicting information less readily than adolescents to update their stimulus-reward associations. Furthermore, more subclinical rigidity in everyday life (parent-ratings) is related to less explorative choice behavior during the probabilistic reversal learning task. Taken together, this study provides first-time data on the development of the underlying processes of cognitive flexibility using computational modeling.
536 _ _ |0 G:(DE-HGF)POF4-525
|a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|c POF4-525
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5251
|a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)187098
|a Kruppa, Jana
|b 1
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, Gereon R.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Herpertz-Dahlmann, Beate
|b 3
700 1 _ |0 P:(DE-Juel1)174172
|a Konrad, Kerstin
|b 4
700 1 _ |0 P:(DE-Juel1)131741
|a Schulte-Rüther, Martin
|b 5
773 _ _ |0 PERI:(DE-600)2411902-7
|a 10.3389/fnins.2020.536596
|g Vol. 14, p. 536596
|p 536596
|t Frontiers in neuroscience
|v 14
|x 1662-453X
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/890479/files/Oberwelland%20Weiss_2021_FrontNeurosci_Developmental%20Differences%20in%20Probabilistic....pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890479
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)137076
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)187098
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174172
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131741
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5251
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 1
913 0 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2020-08-26
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b FRONT NEUROSCI-SWITZ : 2018
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2020-08-26
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21