000890483 001__ 890483
000890483 005__ 20210930133536.0
000890483 0247_ $$2doi$$a10.1097/RLU.0000000000003240
000890483 0247_ $$2ISSN$$a0363-9762
000890483 0247_ $$2ISSN$$a1536-0229
000890483 0247_ $$2Handle$$a2128/28671
000890483 0247_ $$2altmetric$$aaltmetric:88496013
000890483 0247_ $$2pmid$$apmid:32804767
000890483 0247_ $$2WOS$$aWOS:000600422200022
000890483 037__ $$aFZJ-2021-00991
000890483 041__ $$aEnglish
000890483 082__ $$a610
000890483 1001_ $$0P:(DE-HGF)0$$aZaragori, Timothée$$b0$$eCorresponding author
000890483 245__ $$aPhotopenic Defects in Gliomas With Amino-Acid PET and Relative Prognostic Value
000890483 260__ $$a[S.l.]$$bOvid$$c2021
000890483 3367_ $$2DRIVER$$aarticle
000890483 3367_ $$2DataCite$$aOutput Types/Journal article
000890483 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1632206040_23426
000890483 3367_ $$2BibTeX$$aARTICLE
000890483 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890483 3367_ $$00$$2EndNote$$aJournal Article
000890483 520__ $$aThe aim is to explore the concept of photopenic defects in newly diagnosed glioma patients with the 2 widely used 11C-MET and 18F-FDOPA PET amino acid tracers. Thirty-two 11C-MET and 26 18F-FDOPA PET scans with amino acid PET-negative gliomas were selected in this European multicentric study. Of these gliomas, 16 11C-MET and 10 18F-FDOPA PET scans with photopenic defects were identified, exhibiting lower mean tumor-to-background ratio as compared with isometabolic gliomas (P < 0.001). Gliomas with photopenic defects had no different progression-free survival than isometabolic gliomas in the whole population (P = 0.40), but shorter progression-free survival in the subgroup of World Health Organization grade II IDH-mutant astrocytomas (35 vs 68 months; P = 0.047).
000890483 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890483 588__ $$aDataset connected to CrossRef
000890483 7001_ $$0P:(DE-HGF)0$$aCastello, Angelo$$b1
000890483 7001_ $$0P:(DE-HGF)0$$aGuedj, Eric$$b2
000890483 7001_ $$0P:(DE-HGF)0$$aGirard, Antoine$$b3
000890483 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b4$$ufzj
000890483 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie L.$$b5
000890483 7001_ $$0P:(DE-HGF)0$$aLopci, Egesta$$b6
000890483 7001_ $$0P:(DE-Juel1)171957$$aVerger, Antoine$$b7
000890483 773__ $$0PERI:(DE-600)2045053-9$$a10.1097/RLU.0000000000003240$$gVol. 46, no. 1, p. e36 - e37$$n1$$pe36 - e37$$tClinical nuclear medicine$$v46$$x1536-0229$$y2021
000890483 8564_ $$uhttps://juser.fz-juelich.de/record/890483/files/Zaragori_2021_Clin%20Nucl%20Med_Photopenic%20defects%20in...%20post%20print.pdf$$yPublished on 2021-01-01. Available in OpenAccess from 2022-01-01.
000890483 8564_ $$uhttps://juser.fz-juelich.de/record/890483/files/Zaragori_2021_Clin%20Nucl%20Med_photopenic%20defects%20in%20gliomas....-1.pdf$$yRestricted
000890483 909CO $$ooai:juser.fz-juelich.de:890483$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b4$$kFZJ
000890483 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890483 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000890483 9141_ $$y2021
000890483 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890483 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN NUCL MED : 2018$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCLIN NUCL MED : 2018$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000890483 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000890483 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2020-08-18$$wger
000890483 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-08-18
000890483 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-18$$wger
000890483 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000890483 920__ $$lyes
000890483 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000890483 980__ $$ajournal
000890483 980__ $$aVDB
000890483 980__ $$aUNRESTRICTED
000890483 980__ $$aI:(DE-Juel1)INM-3-20090406
000890483 9801_ $$aFullTexts