001     890484
005     20210623133431.0
024 7 _ |a 10.1016/j.pnpbp.2021.110251
|2 doi
024 7 _ |a 0278-5846
|2 ISSN
024 7 _ |a 1878-4216
|2 ISSN
024 7 _ |a 2128/27142
|2 Handle
024 7 _ |a 33493651
|2 pmid
024 7 _ |a WOS:000653445500006
|2 WOS
037 _ _ |a FZJ-2021-00992
082 _ _ |a 610
100 1 _ |a Larabi, Daouia I.
|0 P:(DE-Juel1)180372
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Insight does not come at random: Individual gray matter networks relate to clinical and cognitive insight in schizophrenia
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612956643_4601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a AbstractBackgroundImpaired clinical and cognitive insight are prevalent in schizophrenia and relate to poorer outcome. Good insight has been suggested to depend on social cognitive and metacognitive abilities requiring global integration of brain signals. Impaired insight has been related to numerous focal gray matter (GM) abnormalities distributed across the brain suggesting dysconnectivity at the global level. In this study, we test whether global integration deficiencies reflected in gray matter network connectivity underlie individual variations in insight.MethodsWe used graph theory to examine whether individual GM-network metrics relate to insight in patients with a psychotic disorder (n = 114). Clinical insight was measured with the Schedule for the Assessment of Insight–Expanded and item G12 of the Positive and Negative Syndrome Scale, and cognitive insight with the Beck Cognitive Insight Scale. Individual GM-similarity networks were created from GM-segmentations of T1-weighted MRI-scans. Graph metrics were calculated using the Brain Connectivity Toolbox.ResultsNetworks of schizophrenia patients with poorer clinical insight showed less segregation (i.e. clustering coefficient) into specialized subnetworks at the global level. Schizophrenia patients with poorer cognitive insight showed both less segregation and higher connectedness (i.e. lower path length) of their brain networks, making their network topology more “random”.ConclusionsOur findings suggest less segregated processing of information in patients with poorer cognitive and clinical insight, in addition to higher connectedness in patients with poorer cognitive insight. The ability to take a critical perspective on one's symptoms (clinical insight) or views (cognitive insight) might depend especially on segregated specialized processing within distinct subnetworks.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marsman, Jan-Bernard C.
|b 1
700 1 _ |a Aleman, André
|b 2
700 1 _ |a Tijms, Betty M.
|b 3
700 1 _ |a Opmeer, Esther M.
|b 4
700 1 _ |a Pijnenborg, Gerdina H. M.
|b 5
700 1 _ |a van der Meer, Lisette
|b 6
700 1 _ |a van Tol, Marie-José
|b 7
700 1 _ |a Ćurčić-Blake, Branislava
|b 8
773 _ _ |a 10.1016/j.pnpbp.2021.110251
|g Vol. 109, p. 110251 -
|0 PERI:(DE-600)2008803-6
|p 110251 -
|t Progress in neuro-psychopharmacology & biological psychiatry
|v 109
|y 2021
|x 0278-5846
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/890484/files/1-s2.0-S0278584621000105-mmc1%20Daouia.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/890484/files/1-s2.0-S0278584621000105-mainDaouia.pdf
909 C O |o oai:juser.fz-juelich.de:890484
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180372
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROG NEURO-PSYCHOPH : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21