000890496 001__ 890496
000890496 005__ 20240625095116.0
000890496 0247_ $$2doi$$a10.3390/molecules26051250
000890496 0247_ $$2Handle$$a2128/30611
000890496 0247_ $$2pmid$$a33652554
000890496 0247_ $$2WOS$$aWOS:000628444600001
000890496 037__ $$aFZJ-2021-00995
000890496 082__ $$a540
000890496 1001_ $$00000-0003-0091-6732$$aLai, Hien T. T.$$b0
000890496 245__ $$aThe Interplay of Cholesterol and Ligand Binding in hTSPO from Classical Molecular Dynamics Simulations
000890496 260__ $$aBasel$$bMDPI$$c2021
000890496 3367_ $$2DRIVER$$aarticle
000890496 3367_ $$2DataCite$$aOutput Types/Journal article
000890496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643354169_26921
000890496 3367_ $$2BibTeX$$aARTICLE
000890496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890496 3367_ $$00$$2EndNote$$aJournal Article
000890496 520__ $$aThe translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation, thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO, there are cholesterol–binding motifs, as well as a binding cavity able to accommodate different chemical compounds. Given the lack of structural information for the human protein, we built a model of human (h) TSPO in the apo state and in complex with PK11195, a molecule routinely used in positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran molecular dynamics simulations of the apo and holo proteins embedded in a model membrane. We found that: (i) PK11195 stabilizes hTSPO structural fold; (ii) PK11195 might enter in the binding site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of cholesterol binding to the lower, N–terminal part of hTSPO in the inner membrane leaflet, while this impact is less pronounced for the upper, C–terminal part in the outer membrane leaflet, where the ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously to the so-called CRAC and CARC regions in TM V in the free form (residues L150–X–Y152–X(3)–R156 and R135–X(2)–Y138–X(2)–L141, respectively). However, when the protein is in complex with PK11195, cholesterol binds equally frequently to the CRAC–resembling motif that we observed in TM I (residues L17–X(2)–F20–X(3)–R24) and to CRAC in TM V. We expect that the CRAC–like motif in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide insight into the structural features of hTSPO and the previously unknown interplay between PK11195 and cholesterol interactions with this pharmacologically relevant protein.
000890496 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890496 588__ $$aDataset connected to CrossRef
000890496 7001_ $$0P:(DE-Juel1)165199$$aGiorgetti, Alejandro$$b1$$ufzj
000890496 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b2
000890496 7001_ $$00000-0002-6331-2453$$aNguyen, Toan T.$$b3
000890496 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4
000890496 7001_ $$0P:(DE-Juel1)179141$$aKranjc Pietrucci, Agata$$b5$$eCorresponding author$$ufzj
000890496 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules26051250$$gVol. 26, no. 5, p. 1250 -$$n5$$p1250 -$$tMolecules$$v26$$x1420-3049$$y2021
000890496 8564_ $$uhttps://juser.fz-juelich.de/record/890496/files/Invoice_MDPI_molecules-1054023_1600.00CHF.pdf
000890496 8564_ $$uhttps://juser.fz-juelich.de/record/890496/files/molecules-26-01250.pdf$$yOpenAccess
000890496 8767_ $$81054023$$92021-02-05$$d2021-02-18$$eAPC$$jZahlung erfolgt$$z1600CHF / Belegnr. 1200164019
000890496 909CO $$ooai:juser.fz-juelich.de:890496$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165199$$aForschungszentrum Jülich$$b1$$kFZJ
000890496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b2$$kFZJ
000890496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
000890496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179141$$aForschungszentrum Jülich$$b5$$kFZJ
000890496 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890496 9141_ $$y2021
000890496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000890496 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890496 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2018$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-26
000890496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000890496 920__ $$lyes
000890496 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000890496 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000890496 980__ $$ajournal
000890496 980__ $$aVDB
000890496 980__ $$aUNRESTRICTED
000890496 980__ $$aI:(DE-Juel1)IAS-5-20120330
000890496 980__ $$aI:(DE-Juel1)INM-9-20140121
000890496 980__ $$aAPC
000890496 9801_ $$aAPC
000890496 9801_ $$aFullTexts