000890500 001__ 890500
000890500 005__ 20240712113123.0
000890500 0247_ $$2doi$$a10.1002/cssc.202002113
000890500 0247_ $$2ISSN$$a1864-5631
000890500 0247_ $$2ISSN$$a1864-564X
000890500 0247_ $$2Handle$$a2128/27338
000890500 0247_ $$2altmetric$$aaltmetric:94125205
000890500 0247_ $$2pmid$$a33105061
000890500 0247_ $$2WOS$$aWOS:000587769800001
000890500 037__ $$aFZJ-2021-00998
000890500 082__ $$a540
000890500 1001_ $$0P:(DE-HGF)0$$aKlein, Sven$$b0
000890500 245__ $$aExploiting the Degradation Mechanism of NCM523Graphite Lithium‐Ion Full Cells Operated at High Voltage
000890500 260__ $$aWeinheim$$bWiley-VCH$$c2021
000890500 3367_ $$2DRIVER$$aarticle
000890500 3367_ $$2DataCite$$aOutput Types/Journal article
000890500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615292594_3530
000890500 3367_ $$2BibTeX$$aARTICLE
000890500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890500 3367_ $$00$$2EndNote$$aJournal Article
000890500 520__ $$aLayered oxides, particularly including Li[NixCoyMnz]O2 (NCMxyz) materials, such as NCM523, are the most promising cathode materials for high‐energy lithium‐ion batteries (LIBs). One major strategy to increase the energy density of LIBs is to expand the cell voltage (>4.3 V). However, high‐voltage NCMurn:x-wiley:18645631:media:cssc202002113:cssc202002113-math-0002 graphite full cells typically suffer from drastic capacity fading, often referred to as “rollover” failure. In this study, the underlying degradation mechanisms responsible for failure of NCM523urn:x-wiley:18645631:media:cssc202002113:cssc202002113-math-0003 graphite full cells operated at 4.5 V are unraveled by a comprehensive study including the variation of different electrode and cell parameters. It is found that the “rollover” failure after around 50 cycles can be attributed to severe solid electrolyte interphase growth, owing to formation of thick deposits at the graphite anode surface through deposition of transition metals migrating from the cathode to the anode. These deposits induce the formation of Li metal dendrites, which, in the worst cases, result in a “rollover” failure owing to the generation of (micro‐) short circuits. Finally, approaches to overcome this dramatic failure mechanism are presented, for example, by use of single‐crystal NCM523 materials, showing no “rollover” failure even after 200 cycles. The suppression of cross‐talk phenomena in high‐voltage LIB cells is of utmost importance for achieving high cycling stability.
000890500 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890500 588__ $$aDataset connected to CrossRef
000890500 7001_ $$0P:(DE-HGF)0$$aBärmann, Peer$$b1
000890500 7001_ $$0P:(DE-Juel1)171310$$aBeuse, Thomas$$b2
000890500 7001_ $$0P:(DE-Juel1)171270$$aBorzutzki, Kristina$$b3$$ufzj
000890500 7001_ $$0P:(DE-HGF)0$$aFrerichs, Joop Enno$$b4
000890500 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b5$$ufzj
000890500 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author
000890500 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b7$$eCorresponding author
000890500 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202002113$$gVol. 14, no. 2, p. 595 - 613$$n2$$p595 - 613$$tChemSusChem$$v14$$x1864-564X$$y2021
000890500 8564_ $$uhttps://juser.fz-juelich.de/record/890500/files/cssc.202002113.pdf$$yOpenAccess
000890500 909CO $$ooai:juser.fz-juelich.de:890500$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171270$$aForschungszentrum Jülich$$b3$$kFZJ
000890500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b5$$kFZJ
000890500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000890500 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890500 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890500 9141_ $$y2021
000890500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000890500 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2018$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2018$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-03$$wger
000890500 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890500 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000890500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000890500 920__ $$lyes
000890500 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000890500 9801_ $$aFullTexts
000890500 980__ $$ajournal
000890500 980__ $$aVDB
000890500 980__ $$aUNRESTRICTED
000890500 980__ $$aI:(DE-Juel1)IEK-12-20141217
000890500 981__ $$aI:(DE-Juel1)IMD-4-20141217