000890511 001__ 890511
000890511 005__ 20230815122846.0
000890511 0247_ $$2doi$$a10.3390/rs13040710
000890511 0247_ $$2Handle$$a2128/27347
000890511 0247_ $$2WOS$$aWOS:000624431000001
000890511 0247_ $$2altmetric$$aaltmetric:113815861
000890511 037__ $$aFZJ-2021-01002
000890511 082__ $$a620
000890511 1001_ $$0P:(DE-Juel1)180991$$aBates, Jordan$$b0$$eCorresponding author$$ufzj
000890511 245__ $$aEstimating Canopy Density Parameters Time-Series for Winter Wheat Using UAS Mounted LiDAR
000890511 260__ $$aBasel$$bMDPI$$c2021
000890511 3367_ $$2DRIVER$$aarticle
000890511 3367_ $$2DataCite$$aOutput Types/Journal article
000890511 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639054443_4076
000890511 3367_ $$2BibTeX$$aARTICLE
000890511 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890511 3367_ $$00$$2EndNote$$aJournal Article
000890511 520__ $$aMonitoring of canopy density with related metrics such as leaf area index (LAI) makes a significant contribution to understanding and predicting processes in the soil–plant–atmosphere system and to indicating crop health and potential yield for farm management. Remote sensing methods using optical sensors that rely on spectral reflectance to calculate LAI have become more mainstream due to easy entry and availability. Methods with vegetation indices (VI) based on multispectral reflectance data essentially measure the green area index (GAI) or response to chlorophyll content of the canopy surface and not the entire aboveground biomass that may be present from non-green elements that are key to fully assessing the carbon budget. Methods with light detection and ranging (LiDAR) have started to emerge using gap fraction (GF) to estimate the plant area index (PAI) based on canopy density. These LiDAR methods have the main advantage of being sensitive to both green and non-green plant elements. They have primarily been applied to forest cover with manned airborne LiDAR systems (ALS) and have yet to be used extensively with crops such as winter wheat using LiDAR on unmanned aircraft systems (UAS). This study contributes to a better understanding of the potential of LiDAR as a tool to estimate canopy structure in precision farming. The LiDAR method proved to have a high to moderate correlation in spatial variation to the multispectral method. The LiDAR-derived PAI values closely resemble the SunScan Ceptometer GAI ground measurements taken early in the growing season before major stages of senescence. Later in the growing season, when the canopy density was at its highest, a possible overestimation may have occurred. This was most likely due to the chosen flight parameters not providing the best depictions of canopy density with consideration of the LiDAR’s perspective, as the ground-based destructive measurements provided lower values of PAI. Additionally, a distinction between total LiDAR-derived PAI, multispectral-derived GAI, and brown area index (BAI) is made to show how the active and passive optical sensor methods used in this study can complement each other throughout the growing season.
000890511 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890511 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000890511 536__ $$0G:(GEPRIS)390732324$$aDFG project 390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion $$c390732324$$x2
000890511 588__ $$aDataset connected to CrossRef
000890511 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1
000890511 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b2$$ufzj
000890511 7001_ $$0P:(DE-Juel1)129478$$aJonard, François$$b3
000890511 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs13040710$$gVol. 13, no. 4, p. 710 -$$n4$$p710 -$$tRemote sensing$$v13$$x2072-4292$$y2021
000890511 8564_ $$uhttps://juser.fz-juelich.de/record/890511/files/Invoice_MDPI_remotesensing-1083723_1884.53EUR.pdf
000890511 8564_ $$uhttps://juser.fz-juelich.de/record/890511/files/remotesensing-13-00710-v2.pdf$$yOpenAccess
000890511 8767_ $$81083723$$92021-02-10$$d2021-02-15$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200163978
000890511 909CO $$ooai:juser.fz-juelich.de:890511$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180991$$aForschungszentrum Jülich$$b0$$kFZJ
000890511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b1$$kFZJ
000890511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b2$$kFZJ
000890511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129478$$aForschungszentrum Jülich$$b3$$kFZJ
000890511 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890511 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000890511 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890511 9141_ $$y2021
000890511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000890511 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890511 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2018$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890511 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000890511 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000890511 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890511 980__ $$ajournal
000890511 980__ $$aVDB
000890511 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890511 980__ $$aAPC
000890511 980__ $$aUNRESTRICTED
000890511 9801_ $$aAPC
000890511 9801_ $$aFullTexts