Supporting information

V(III) Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity

Daniel Böhm^{1,2}, Michael Beetz¹, Christopher Kutz¹, Siyuan Zhang⁴, Christina Scheu^{4,5}, Thomas Bein^{1*} and Dina Fattakhova-Rohlfing^{2,3*}

¹Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Butenandtstrasse 5-13 (E), 81377 Munich, Germany

²Institute of Energy and Climate Research (IEK-1) Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany

³Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lothar-straße 1, 47057 Duisburg, Germany

⁴Max-Planck-Institut für Eisenforschung (MPIE) GmbH & RWTH Aachen, Max-Planck-Straße 1, 40237 Düsseldorf

⁵Materials Analytics, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen, Germany

Figure S1 X-ray diffractogramms (a) of nanocatalyst prepared by rapid precipitation method with different Ni(II)-precursors and Raman spectra (b) of nitrate anion intercalated Ni(OH)₂. α -Ni(OH)₂ (Ni(OH)₂ x 0.75 H₂O) pattern: ICDD card number 00-038-0715 (rhombohedral, a = b = 3.08 Å, c = 23.41 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126, c = 4.605, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). The bands at 450 cm⁻¹ (lattice mode) and 1070 cm⁻¹ (2nd order lattice mode) were assigned to the α -Ni(OH)₂ phase. $^{1-2}$ Bands at 447 cm⁻¹ (A_{1g} lattice mode), 3581 cm⁻¹ (O-H stretch / lattice OH / layer H₂O mode) and 3690 cm⁻¹ (surface O-H stretch) were assigned to the β -Ni(OH)₂ phase. 2

Figure S2 X-ray diffractograms of Ni(OH)₂ products obtained by the rapid precipitation method with KO₂ with variation of reaction time before quenching. Synthesis performed at room temperature. α -Ni(OH)₂ (Ni(OH)₂ x 0.75 H₂O) pattern: ICDD card number 00-038-0715 (rhombohedral, a = b = 3.08 Å, c = 23.41 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$).

Figure S3 X-ray diffractograms of Ni(OH)₂ products obtained by rapid precipitation method with KO₂ with variation of synthesis temperature. Synthesis performed with 2 min reaction time before quenching. α -Ni(OH)₂ (Ni(OH)₂ x 0.75 H₂O) pattern: ICDD card number 00-038-0715 (rhombohedral, a = b = 3.08 Å, c = 23.41 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$).

Figure S4 X-ray diffractograms of Ni(OH)₂ products obtained by rapid precipitation method with varied amounts of KO₂. Synthesis was performed with 2 min reaction time before quenching each at 0 °C. α -Ni(OH)₂ (Ni(OH)₂ x 0.75 H₂O) pattern: ICDD card number 00-038-0715 (rhombohedral, a = b = 3.08 Å, c = 23.41 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$). β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$).

 $Table~S~1~Elemental~analysis~via~inductively~coupled~plasma~optical~emission~spectrometry~(ICP-OES)~of~V(III)-doped~Ni_{1-}\\ _xV_x(OH)_2~Cl^-$

doping element	precursor	doping level / at%	ICP-OES / at%
pure Ni(OH) ₂	NiCl ₂	0	N/A
V(III)	$NiCl_2 + VCl_3$	1	1.0
V(III)	$NiCl_2 + VCl_3$	2	2.1
V(III)	$NiCl_2 + VCl_3$	5	4.9
V(III)	$NiCl_2 + VCl_3$	10	9.7
V(III)	$NiCl_2 + VCl_3$	15	15.4
V(III)	$NiCl_2 + VCl_3$	50	38.6
pure vanadium compound	VCl ₃	100	N/A

Figure S5 (a) Transmission electron micrograph of single β-Ni(OH)₂ nanoparticle. (b) Size distribution determined from particles imaged by TEM. Indexing of d-spacings of β-Ni(OH)₂ nanoparticle according to β-Ni(OH)₂ pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$).

Figure S6 Structural characterization of time-dependent phase transformations of V(III) doped Ni(OH)₂ by transmission electron microscopy. TEM images and electron diffraction pattern of 10 at% V(III) doped Ni(OH)₂ after 3 h (a-c) and 15 at% V(III) doped Ni(OH)₂ after 24 h (d-f) aging time. β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, α = β = 90°, γ = 120)

Figure S7 STEM-EDX and energy-dispersive X-ray spectroscopy mapping of V(III) doped Ni(OH)₂ at different length scales. STEM-EDX mappings of 3 h aged 10 at% V(III) doped sample (a-c). STEM-EDX mappings of 72 h aged 10 at% V(III) doped, at medium (d-f) and lower (g-i) magnification.

Figure S8 Characterization of the electronic structure of nickel in aged and V(III)-doped samples by electron energy loss spectroscopy. EELS spectra with 50 meV dispersion of (a) undoped 15 min, (b) undoped 72 h and (c) 10 at% V(III) 72 h aged Ni(OH)₂ samples.

Figure S9 Scanning electron micrographs of Ni(OH)₂ based electrodes for electrochemical characterization. (a-d) Top-view of 1 h (a, b) and 24 h (c, d) aged undoped Ni(OH)₂ dropcasted on an FTO substrate with loadings of \sim 50 µg cm⁻².

Figure S10 Electrochemical characterization of chemically aged Ni(OH)₂. Cyclic voltammograms (1^{st} , 4^{th} , 8^{th} , 12^{th} , 16^{th} and 20^{th} scan cycle) of 1 h (a) and 24 h (b) aged undoped Ni(OH)₂.

Figure S11 Electrochemical characterization of chemically aged and V(III) doped Ni(OH)₂. Cyclic voltammograms (20th scan cycle) of 1 h (a) and 24 h (b) aged 0, 1, 2, 5, 10, 15, 50 and 100 at% V(III) containing Ni(OH)₂.

Table S2 Results obtained from the electrochemical characterization of 1 h chemically aged $Ni_{1-x}V_x(OH)_2$ obtained in the 20^{th} cycle

·							
	mass loading			Redox	η at	current	current
V(III) content	mass loading	E_a / η	E_c / η	potential	10 mA cm ⁻²	density j at	density j at
/ at%	(determined) / μg cm ⁻²	in mV	in mV	E_{red} / η	/mV	$\eta = 350 \text{ mV}$	$\eta = 400 \text{ mV}$
				in mV		/ mA cm ⁻²	/ mA cm ⁻²
0	N/A ^a	184	84	134	344	10.91	34.48
1	N/A^a	169	88	128.5	335	12.64	38.05
2	N/A ^a	184	82	133	350	9.59	29.53
5	N/A ^a	163	84	123.5	357	7.90	24.74
10	60.8	N/Ab	N/Ab	N/Ab	379	5.59	13.81
15	70.7	177	77	127	379	4.44	14.98
50	35.6	N/Ab	N/Ab	N/Ab	411	2.95	8.24
100	24.7	N/A ^b	N/A ^b	N/Ab	> 900	0.01	0.01

^a No mass loading could be determined. ^b No value listed due to a broad and undefined peak.

Table S3 Results obtained from the electrochemical characterization of 24 h chemically aged $Ni_{1-x}V_x(OH)_2$ obtained in the 20th cycle

mass loading (determined) / µg cm ⁻² 72.7	E_a/η in mV	E_c/η in mV	Redox potential E_{red} / η in mV	η at 10 mA cm ⁻² / mV	current density j at $\eta = 350 \text{ mV}$ / mA cm ⁻²	current density j at $\eta = 400 \text{ mV}$ / mA cm ⁻²
/ μg cm ⁻²				/ mV	·	•
	221	40	in mV		/ mA cm ⁻²	/ mA cm ⁻²
72.7	221	40				
		49	135	433	2.48	6.78
72.7	220	54	137	459	1.77	4.64
71.7	216	62	139	438	2.46	6.45
66.8	218	77	148	389	4.59	14.64
N/Aa	191	68	130	411	3.39	8.91
85.9	284	15	150	458	2.23	5.01
21.7	176	86	131	396	3.96	12.31
19.7	N/Ab	N/Ab	N/Ab	> 900	0.01	0.01
	71.7 66.8 N/Aa 85.9 21.7	72.7 220 71.7 216 66.8 218 N/Aa 191 85.9 284 21.7 176	72.7 220 54 71.7 216 62 66.8 218 77 N/Aa 191 68 85.9 284 15 21.7 176 86	72.7 220 54 137 71.7 216 62 139 66.8 218 77 148 N/Aa 191 68 130 85.9 284 15 150 21.7 176 86 131	72.7 220 54 137 459 71.7 216 62 139 438 66.8 218 77 148 389 N/Aa 191 68 130 411 85.9 284 15 150 458 21.7 176 86 131 396	72.7 220 54 137 459 1.77 71.7 216 62 139 438 2.46 66.8 218 77 148 389 4.59 N/Aa 191 68 130 411 3.39 85.9 284 15 150 458 2.23 21.7 176 86 131 396 3.96

^a No mass loading could be determined. ^b No value listed due to a broad and undefined peak.

Figure S12 Structural characterization of aged Ni(OH)₂ upon calcination. (a) Thermogravimetric analysis (black curve) and differential scanning calorimetry (red curve) of 1 h aged Ni(OH)₂ sample. (b) X-ray diffractogram of 200 – 450°C (red curves) calcined 1 h aged Ni(OH)₂ sample. (c) TGA of 1 h (black curve) and 24 h (green curve) aged Ni(OH)₂ samples. (d) XRD of calcined 1 h aged (black and grey curve) and 24 h aged (dark and light green curve) Ni(OH)₂. α -Ni(OH)₂ (Ni(OH)₂ x 0.75 H₂O) pattern: ICDD card number 00-038-0715 (rhombohedral, a = b = 3.08 Å, c = 23.41 Å, α = β = 90°, γ = 120°). β -Ni(OH)₂ (Ni(OH)₂) pattern: ICDD card number 00-014-0117 (hexagonal, a = b = 3.126 Å, c = 4.605 Å, α = β = 90°, γ = 120°). NiO pattern: ICDD card number 01-071-1179 (cubic, a = b = c = 4.178 Å, α = β = γ = 90°)

Figure S13 Structural characterization of calcined $Ni_{1-x}V_x(OH)_2$. (a) Thermogravimetric analysis of 1 h chemically aged undoped and 10 at% V(III) containing Ni(OH)₂. (b) X-ray diffractograms of V(III) doped (0-100 at% V(III) - greyscale and red curves) Ni(OH)₂ calcined at 250 °C. (c) XRD of undoped and Ni_{0.9}V_{0.1}(OH)₂ calcined at 250 °C (black, red curve) and 450 °C (grey, light red curve). NiO pattern: ICDD card number 01-071-1179 (cubic, a = b = c = 4.178 Å, $\alpha = \beta = \gamma = 90^{\circ}$) (d) Crystallite domain sizes of 250 °C (black) and 300 °C (red) calcined Ni_{1-x}V_x(OH)₂ derived from XRD line broadening according to Scherrer's equation. Graphical representation of data listed in Table S4 and S5. (e) Lattice parameter a of 250 °C (black) and 300 °C (red) calcined Ni_{1-x}V_x(OH)₂ calculated from the position (Gaussian fitted center of broadened reflection) of the NiO phase (200) reflection. Linear regression for 0-10 at% V(III) (dashed grey line) added for 250 °C calcined sample series. Graphical representation of data listed in Table S4 and S5.

Table S4: Calculated particle/domain sizes and lattice parameter a (NiO phase) based on the broadening of the 200 reflection in Ni $_{1-x}$ V $_x$ O after calcination at 250 °C according to the Scherrer equation

Table S5: Calculated particle/domain sizes and lattice parameter a (NiO phase) based on the broadening of the 200 reflection in Ni $_{1-x}$ V $_x$ O after calcination at 300 °C according to the Scherrer equation

V(III)	particle		lattice	V(III)	particle		lattice
content	size	Position /° 2Θ	parameter a	content	size	position /° 2Θ	parameter a
/ at%	/ nm		/ Å	/ at%	/ nm		/ Å
0	8.6	43.197	4.186	0	4.5	43.010	4.270
1	5.3	43.147	4.191	1	3.6	42.961	4.272
2	4.3	43.098	4.197	2	3.2	42.913	4.275
5	3.2	43.056	4.201	5	2.5	42.834	4.279
10	2.6	42.995	4.207	10	1.8	42.504	4.297
15	2.3	42.993	4.208				
		·	·			·	

Figure S14 Scanning electron micrographs of NiO-based electrodes for electrochemical characterization. (a, b) Top-view of 1 h aged undoped Ni(OH)₂ dropcasted on an FTO substrate and calcined at 250 °C with loadings of \sim 50 μ g cm⁻².

Figure S15 Tafel plot of chemically aged and calcined nickel hydroxide phases. Tafel plot of NiO_xH_y 1 h aged (black), 24 h aged (red) and 250 °C calcined (green) product.

REFERENCES

- 1. Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R., Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. *J. Phys. Chem. A* **2012**, *116* (25), 6771-6784.
- 2. Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R., Applications of in Situ Raman Spectroscopy for Identifying Nickel Hydroxide Materials and Surface Layers during Chemical Aging. *ACS Appl. Mater. Inter.* **2014**, *6* (5), 3141-3149.