001     890552
005     20230127125338.0
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 10.1098/rsta.2020.0097
|2 doi
024 7 _ |a altmetric:100198753
|2 altmetric
024 7 _ |a 2128/27491
|2 Handle
024 7 _ |a 33583266
|2 pmid
024 7 _ |a WOS:000649132600009
|2 WOS
037 _ _ |a FZJ-2021-01034
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Can deep learning beat numerical weather prediction?
260 _ _ |a London
|c 2021
|b Royal Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642415259_30509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The recent hype about artificial intelligence has sparked renewed interest in applying the successful deep learning (DL) methods for image recognition, speech recognition, robotics, strategic games and other application areas to the field of meteorology. There is some evidence that better weather forecasts can be produced by introducing big data mining and neural networks into the weather prediction workflow. Here, we discuss the question of whether it is possible to completely replace the current numerical weather models and data assimilation systems with DL approaches. This discussion entails a review of state-of-the-art machine learning concepts and their applicability to weather data with its pertinent statistical properties. We think that it is not inconceivable that numerical weather models may one day become obsolete, but a number of fundamental breakthroughs are needed before this goal comes into reach.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Betancourt, Clara
|0 P:(DE-Juel1)171435
|b 1
|u fzj
700 1 _ |a Gong, Bing
|0 P:(DE-Juel1)177767
|b 2
|u fzj
700 1 _ |a Kleinert, Felix
|0 P:(DE-Juel1)176602
|b 3
|u fzj
700 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 4
|u fzj
700 1 _ |a Leufen, Lukas Hubert
|0 P:(DE-Juel1)177004
|b 5
|u fzj
700 1 _ |a Mozaffari, Amirpasha
|0 P:(DE-Juel1)166264
|b 6
|u fzj
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)180752
|b 7
|u fzj
770 _ _ |a Machine learning for weather and climate modelling
773 _ _ |a 10.1098/rsta.2020.0097
|0 PERI:(DE-600)1462626-3
|n 2194
|p 20200097
|t Philosophical transactions of the Royal Society of London / A
|v 379
|y 2021
|x 0080-4614
856 4 _ |u https://juser.fz-juelich.de/record/890552/files/741183.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890552/files/rsta.2020.0097.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890552
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)6952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171435
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176602
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177004
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)180752
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHILOS T R SOC A : 2018
|d 2020-09-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21