000890555 001__ 890555
000890555 005__ 20220930130306.0
000890555 0247_ $$2doi$$a10.1063/5.0038039
000890555 0247_ $$2ISSN$$a0021-9606
000890555 0247_ $$2ISSN$$a1089-7690
000890555 0247_ $$2ISSN$$a1520-9032
000890555 0247_ $$2Handle$$a2128/27382
000890555 0247_ $$2altmetric$$aaltmetric:101247956
000890555 0247_ $$2pmid$$a33639776
000890555 0247_ $$2WOS$$aWOS:000630522900006
000890555 037__ $$aFZJ-2021-01037
000890555 082__ $$a530
000890555 1001_ $$0P:(DE-Juel1)179461$$aMohanakumar, Shilpa$$b0$$ufzj
000890555 245__ $$aThermodiffusion of aqueous solutions of various potassium salts
000890555 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2021
000890555 3367_ $$2DRIVER$$aarticle
000890555 3367_ $$2DataCite$$aOutput Types/Journal article
000890555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615553883_17330
000890555 3367_ $$2BibTeX$$aARTICLE
000890555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890555 3367_ $$00$$2EndNote$$aJournal Article
000890555 520__ $$aThermophoresis or thermodiffusion has become an important tool to monitor protein–ligand binding as it is very sensitive to the nature of solute–water interactions. However, the microscopic mechanisms underlying thermodiffusion in protein systems are poorly understood at this time. One reason is the difficulty to separate the effects of the protein system of interest from the effects of buffers that are added to stabilize the proteins. Due to the buffers, typical protein solutions form multicomponent mixtures with several kinds of salt. To achieve a more fundamental understanding of thermodiffusion of proteins, it is therefore necessary to investigate solutions of buffer salts. For this work, the thermodiffusion of aqueous potassium salt solutions has been studied systematically. We use thermal diffusion forced Rayleigh scattering experiments in a temperature range from 15 °C to 45 °C to investigate the thermodiffusive properties of aqueous solutions of five potassium salts: potassium chloride, potassium bromide, potassium thiocyanate, potassium acetate, and potassium carbonate in a molality range between 1 mol/kg and 5 mol/kg. We compare the thermophoretic results with those obtained for non-ionic solutes and discuss the thermophoresis of the salts in the context of ion-specific solvation according to the Hofmeister series.I. INTRODUCTIO
000890555 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890555 588__ $$aDataset connected to CrossRef
000890555 7001_ $$0P:(DE-HGF)0$$aLuettmer-Strathmann, Jutta$$b1
000890555 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2$$eCorresponding author
000890555 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0038039$$gVol. 154, no. 8, p. 084506 -$$n8$$p084506 -$$tThe journal of chemical physics$$v154$$x0021-9606$$y2021
000890555 8564_ $$uhttps://juser.fz-juelich.de/record/890555/files/JCP_invoice_JCP20-AR-WCP2020-04522_00327.pdf
000890555 8564_ $$uhttps://juser.fz-juelich.de/record/890555/files/5.0038039.pdf$$yOpenAccess
000890555 8767_ $$8JCP20-AR-WCP2020-04522_00327$$92021-02-15$$d2021-02-18$$eHybrid-OA$$jZahlung erfolgt$$z$3,500 /Belegnr. 1200164046
000890555 909CO $$ooai:juser.fz-juelich.de:890555$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000890555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179461$$aForschungszentrum Jülich$$b0$$kFZJ
000890555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ
000890555 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000890555 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890555 9141_ $$y2021
000890555 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000890555 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890555 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890555 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000890555 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000890555 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000890555 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000890555 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000890555 980__ $$ajournal
000890555 980__ $$aVDB
000890555 980__ $$aUNRESTRICTED
000890555 980__ $$aI:(DE-Juel1)IBI-4-20200312
000890555 980__ $$aAPC
000890555 9801_ $$aAPC
000890555 9801_ $$aFullTexts