000890557 001__ 890557
000890557 005__ 20240712084455.0
000890557 0247_ $$2doi$$a10.1002/adts.202000319
000890557 0247_ $$2Handle$$a2128/27404
000890557 0247_ $$2altmetric$$aaltmetric:100159950
000890557 0247_ $$2WOS$$aWOS:000617239100001
000890557 037__ $$aFZJ-2021-01039
000890557 082__ $$a050
000890557 1001_ $$0P:(DE-HGF)0$$aBeuel, Sebastian$$b0
000890557 245__ $$aThe Influence of Photo‐Induced Space Charge and Energetic Disorder on the Indoor and Outdoor Performance of Organic Solar Cells
000890557 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2021
000890557 3367_ $$2DRIVER$$aarticle
000890557 3367_ $$2DataCite$$aOutput Types/Journal article
000890557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615811126_29418
000890557 3367_ $$2BibTeX$$aARTICLE
000890557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890557 3367_ $$00$$2EndNote$$aJournal Article
000890557 520__ $$aApart from traditional large‐scale outdoor application, organic solar cells are also of interest for powering small, off‐grid electronic devices indoors. For operation under the low light intensities that are typical for indoor application, a high shunt resistance is required calling for thick active layers in industrial processing to ensure maximum coverage. However, the thickness of an organic solar cell based on energetically disordered semiconductors is limited by space‐charge effects from charged shallow defects under nonuniform generation. While other sources of space charge such as doping and asymmetric transport have been extensively discussed in previous studies, this work offers a theoretical analysis of this photo‐induced space charge in shallow defects and visualizes how the space charge builds up with increasing light intensity with drift‐diffusion simulations. It is shown that the effect particularly deteriorates the performance of an organic solar cell with high active‐layer thickness and substantial energetic disorder. However, the simulations reveal that solar cells are less sensitive to these parameters under low light intensities due to a reduced density of photo‐induced space charge. Therefore, a wider range of material systems and absorber thicknesses can be viable for indoor applications than one may initially expect from testing under 1 sun illumination.
000890557 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000890557 588__ $$aDataset connected to CrossRef
000890557 7001_ $$0P:(DE-Juel1)180703$$aHartnagel, Paula$$b1
000890557 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2$$eCorresponding author
000890557 773__ $$0PERI:(DE-600)2894557-8$$a10.1002/adts.202000319$$gp. 2000319 -$$n3$$p2000319$$tAdvanced theory and simulations$$v4$$x2513-0390$$y2021
000890557 8564_ $$uhttps://juser.fz-juelich.de/record/890557/files/adts.202000319.pdf$$yOpenAccess
000890557 8767_ $$d2021-02-24$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000890557 909CO $$ooai:juser.fz-juelich.de:890557$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000890557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180703$$aForschungszentrum Jülich$$b1$$kFZJ
000890557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
000890557 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890557 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890557 9141_ $$y2021
000890557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-08
000890557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-08
000890557 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890557 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-08
000890557 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-08$$wger
000890557 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-08
000890557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890557 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-08
000890557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-08
000890557 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000890557 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000890557 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000890557 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000890557 920__ $$lyes
000890557 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000890557 9801_ $$aAPC
000890557 9801_ $$aFullTexts
000890557 980__ $$ajournal
000890557 980__ $$aVDB
000890557 980__ $$aUNRESTRICTED
000890557 980__ $$aI:(DE-Juel1)IEK-5-20101013
000890557 980__ $$aAPC
000890557 981__ $$aI:(DE-Juel1)IMD-3-20101013