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Ideal Solar Cell
Detailed Balance Model

Device Physics Basics
Recombination, Transport and the Band 

Diagram
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Photovoltaic Mechanism
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Shockley-Queisser model - Jsc

T = 5760 K T = 300 K
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Solar cell → Sun

T = 5760 K T = 300 K
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Radiative Recombination
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Balance Between Generation and Recombination
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Available photon flux
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Absorbed photon flux
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Energy loss due to thermalization
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Energy loss due to thermalization
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Losses at short circuit (thermalization in the

contacts)

15

0.0 0.5 1.0 1.5 2.0 2.5

0.0 0.5 1.0 1.5 2.0 2.5

-60

-40

-20

0

p
h

o
to

n
 f

lu
x

voltage V (V)

c
u

rr
e

n
t 

d
e

n
s
it
y
 J

 (
m

A
/c

m
2
)

photon energy Eph (eV)

not absorbed

therm
alization

isothermal

Eg

JV

@ Jsc energy

0
Figure credits: L. Krückemeier



Losses at open circuit (recombination)
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Losses at the maximum power point
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Current Density and Power Density

vs. Voltage
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Losses as a function of voltage
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Shockley-Queisser Limit

Shockley and Queisser, J. Appl. Phys. (1961)
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Shockley-Queisser Limit

Shockley and Queisser, J. Appl. Phys. (1961)
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Shockley-Queisser Limit

Shockley and Queisser, J. Appl. Phys. (1961)
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Efficiency trends for different PV 

technologies
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Ideal solar cell vs. Real world losses
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Ideal solar cell vs. Real world losses
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Device physics of solar cells

From material parameters to device performance
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a miracle appears

current/voltage curve and efficiency 



Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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Definition: Generation rate of

electron-hole pairs

Topic: optics

Depends on absorption

coefficient a, thickness d and 
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Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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electron-hole pairs

Topic: electronic properties

Depends on defect densities and 

positions, capture coefficients, 

carrier densities. Example:

rad

p n

np
R k np

n p 
= +

+

(rad. SRH)



0.0 0.1 0.2 0.3 0.4
-1

0

1

2

3

EC

Efn

Efp

e
n
e
rg

y
 E

 (
e
V

)

position x (µm)

EV

Bulk Recombination

30

rad

p n

np
R k np

n p 
= +

+

(many phonons)



Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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Topic: charge transport

Depends on mobility and carrier

density gradients. Note:
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Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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Definition: Spatial derivative of

the drift current

Topic: charge transport

Depends on mobility , carrier

density n,p and electric field F.



Device physics of solar cells

From material parameters to device performance
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current/voltage curve and efficiency 
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Definition: Second derivative of

the electrostatic potential

Topic: electrostatics

Depends on space charge  and 

permittivity . Affected strongly by

doping. Note:

D A( )q p n N N = − + −



Coupled differential equations
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current/voltage curve and efficiency 
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Coupled differential equations
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current/voltage curve and efficiency 
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Coupled differential equations
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current/voltage curve and efficiency 
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Interface recombination

11.02.2021 37

0.0 0.1 0.2 0.3 0.4
-1

0

1

2

3

EC

Efn

Efp

e
n

e
rg

y
 E

 (
e

V
)

position x (µm)

EV

p n/ /

np
R

n S p S
=

+

R: Recombination rate per 

unit area.

Sn/p: surface recombination

velocity in cm/s.



Banddiagrams and Fermi levels
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Figure credits: adapted from L. Krückemeier0 200 400 600
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Gradient of the quasi-Fermi level
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Gradient of the quasi-Fermi level
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Figure credits: adapted from L. Krückemeier
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Piers Barnes, Imperial College

An Equivalent Circuit Model to Interpret Transient and 

Frequency Domain Behaviour of Perovskite Solar Cell 

Operation
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A positive voltage is applied to the the hole transporting material (HTM) 

electrode of a perovskite solar cell. We might expect this to gradually reduce

the amount positive ionic charge to accumulated at this interface. 

How would you expect the electronic current through the cell in the dark to

change in response to the change ionic charge redistribution if recombination

of electrons at the HTM/perovskite interface interface limits the cell current?

• Current increases/decreases with time?

How would you expect the electronic current through the cell in the dark to

change as the ionic charge redistributes if injection of electrons at the

opposite interface limits the cell current?

• Current increases/decreases with time?



Philip Schulz

Surface and Interface Analysis of Perovskite Solar Cells
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Bechu et al. Adv. Energy Mater. 2020



Philip Schulz

Surface and Interface Analysis of Perovskite Solar Cells
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Which of the following semiconductor properties, among others, 

can be probed by ultraviolet and X-ray photoemission

spectroscopy (UPS/XPS): The position of the conduction band 

minimum and valence band maximum, the effective mass of

electrons and holes, or the ionization energy?

• All of the above.

• The band positions and ionization energy.

• The effective mass of electrons and holes, but requires an 

angle-resolved spectrometer.

• The position of the valence band maximum, the effective

mass of holes and the ionization energy.

• Only the band positions and effective mass of electrons and 

holes.

• Only the valence band onset and the ionization energy.
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Selective vs. not so selective contacts.

See e.g. Rau et al. Adv. Mater. Interf. 2019
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Which of the following statements on the use of equivalent 

circuit models for solar cells are correct?
• Because the diode equation is non-linear we cannot use an equivalent circuit model. However we can always 

make a linear expansion to derive an equivalent circuit for the case of small deviations from a working point.

• Because the series resistance is dependent on the external voltage, the problem gets inherently non-linear. A 

linear expansion at a given working point is still possible, and therefore we can always have a correct 

equivalent circuit for the small signal analysis.

• The series resistance is dependent on the external voltage and the problem gets non-linear. A linear 

expansion at a given working point is not generally possible because we cannot express the interaction 

between the external voltage and the internal voltage (i.e. the chemical potential of charge carriers) by a 

difference of a single potential. However, at a working point where both potentials are equal an equivalent 

circuit model works for the small signal analysis. 

• One of the equations describing the solar cell contains two different potentials (electrostatic and chemical). An 

equivalent circuit model can only deal with a single potential. However, an equivalent circuit model works for 

the small signal analysis at open circuit condition.

• One of the equations describing the solar cell contains two different potentials (electrostatic and chemical). An 

equivalent circuit model can only deal with a single potential. However, an equivalent circuit model works for 

the small signal analysis at short circuit condition.

• Equivalent circuits are generally unphysical because they do not account for the quantum nature of the 

photovoltaic effect. 
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To achieve high quasi-Fermi level splitting (and high open 

circuit voltage) at a given excitation it helps to have:

(choose as many as apply)

• high doping

• low deep defect concentration

• high mobilty

• long charge-carrier lifetime

• good band alignment at the contacts
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Experimentally accessible regions for defect density determination from C(V)

Ravishankar et al. arXiv:2008.02892
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Which of these statements are correct?

• From capacitance-voltage profiling of a 400nm thick halide perovskite 

solar cell (dielectric constant = 33), a doping density in the absorber layer 

of 1014 cm-3 can be deduced.

• To measure a carrier density of 1012cm-3 in a pn-junction or p-i-n junction 

with capacitance-voltage profiling (or Mott-Schottky analysis) the 

absorber layer (epsilon=12) has to be larger than 15 µm.

• The photoluminescence quantum efficiency (PLQY) of a solar cell is 

always smaller than the PLQY of an absorber layer without contacts, 

since in the case of the solar cell there is charge separation. 

• The ideal photoluminescence transient of a photovoltaic material should 

be a monoexponential independent of the excitation density.

• For the case of strong interface recombination at the contacting layers, 

increasing the carrier lifetime of the carriers in the absorbing 

semiconductor material will not improve the open-circuit voltage.
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You have performed one standard density functional theory (DFT) calculation 

of MAPI on your desktop computer. Can you extract the ionization potential 

from this calculation?

• Yes, I just need to find out what the energy of the highest occupied 

electronic state is.

• No, DFT is a ground state theory, therefore I would need to perform a 

second calculation in which I remove an electron from the system, and 

then calculate the ionization potential as the difference in total energies of 

the neutral and ionized system.

• Yes, but I need to define what the zero of the energy scale is by 

constructing a surface slab and aligning the eigenvalues to the potential 

far away from the slab.

• No, I cannot run a DFT calculation of MAPI on my desktop computer. More 

computing cores and memory are needed for doing such a calculation.



David Cahen, Weizmann Institute and Bar-Ilan

Defects & Halide Perovskites: Tautology, Oxymoron or 

What?

11.02.2021 54



David Cahen, Weizmann Institute and Bar-Ilan

Defects & Halide Perovskites: Tautology, Oxymoron or 

What?

11.02.2021 55

Which of the following assumptions or “laws” are valid / used in 

Defect Chemical descriptions of crystalline ordered solids at STP 

conditions; the densities of defects in which can be viewed as dilute 

(including the densities of any defect complexes):

• Boltzmann statistics

• Charge conservation

• Charge neutrality

• Conservation of matter

• For semiconducting (and metal) solids: only electrons (holes) are 

mobile 

• Mass Action (Guldberg-Waage) law

• Harmonic approximation

• Long- and short-range order

• Three rules of accounting



Thank you for your attention

and have fun during the conference! 


