000890562 001__ 890562
000890562 005__ 20210623133349.0
000890562 0247_ $$2doi$$a10.1021/acsmacrolett.0c00834
000890562 0247_ $$2Handle$$a2128/27443
000890562 0247_ $$2WOS$$aWOS:000636739700003
000890562 037__ $$aFZJ-2021-01043
000890562 041__ $$aEnglish
000890562 082__ $$a540
000890562 1001_ $$0P:(DE-HGF)0$$aBurger, Nikolaos A.$$b0
000890562 245__ $$aStabilization of Supramolecular Polymer Phase at High Pressures
000890562 260__ $$aWashington, DC$$bACS$$c2021
000890562 3367_ $$2DRIVER$$aarticle
000890562 3367_ $$2DataCite$$aOutput Types/Journal article
000890562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616141641_4228
000890562 3367_ $$2BibTeX$$aARTICLE
000890562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890562 3367_ $$00$$2EndNote$$aJournal Article
000890562 520__ $$aWe utilize dynamic light scattering (DLS) and passive microrheology to examine the phase behavior of a supramolecular polymer at very high pressures. The monomer, 2,4-bis(2-ethylhexylureido)toluene (EHUT), self-assembles into supramolecular polymeric structures in the nonpolar solvent cyclohexane by means of hydrogen bonding. By varying the concentration and temperature at atmospheric pressure, the formation of the viscoelastic network (at lower temperatures) and predominantly viscous phases, based on self-assembled tube and filament structures, respectively, has been established. The associated changes in the rheological properties have been attributed to a structural thickness transition. Here, we investigate the effects of pressure variation from atmospheric up to 1 kbar at a given concentration. We construct a temperature–pressure diagram that reveals the predominance of the viscoelastic network phase at high pressures. The transition from the viscoelastic network organization of the tubes to a weaker viscous-dominated structure of the filaments is rationalized by using the Clapeyron equation, which yields an associated volume change of about 8 Å3 per EHUT molecule. This change is further explained by means of Molecular Dynamics simulations of the two phases, which show a decrease in the molecular volume at the filament-tube transition, originating from increased intermolecular contacts in the tube with respect to the filament. These findings offer insights into the role of pressure in stabilizing self-assemblies.
000890562 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890562 588__ $$aDataset connected to CrossRef
000890562 7001_ $$0P:(DE-HGF)0$$aMavromanolakis, Antonios$$b1
000890562 7001_ $$0P:(DE-Juel1)130829$$aMeier, G.$$b2
000890562 7001_ $$0P:(DE-HGF)0$$aBrocorens, Patrick$$b3
000890562 7001_ $$00000-0002-6334-4068$$aLazzaroni, Roberto$$b4
000890562 7001_ $$00000-0001-7613-7028$$aBouteiller, Laurent$$b5
000890562 7001_ $$00000-0003-1855-7619$$aLoppinet, Benoit$$b6
000890562 7001_ $$00000-0003-0866-1930$$aVlassopoulos, Dimitris$$b7$$eCorresponding author
000890562 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.0c00834$$gp. 321 - 326$$n3$$p321 - 326$$tACS Macro Letters$$v10$$x2161-1653$$y2021
000890562 8564_ $$uhttps://juser.fz-juelich.de/record/890562/files/EHUT%20MACRO%20LETT%20final.pdf$$yPublished on 2021-02-08. Available in OpenAccess from 2022-02-08.
000890562 8564_ $$uhttps://juser.fz-juelich.de/record/890562/files/SI%20EHUT%20macro%20letters%20revised.pdf$$yPublished on 2021-02-08. Available in OpenAccess from 2022-02-08.
000890562 8564_ $$uhttps://juser.fz-juelich.de/record/890562/files/acsmacrolett.0c00834.pdf$$yRestricted
000890562 909CO $$ooai:juser.fz-juelich.de:890562$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130829$$aForschungszentrum Jülich$$b2$$kFZJ
000890562 9101_ $$0I:(DE-HGF)0$$60000-0002-6334-4068$$aExternal Institute$$b4$$kExtern
000890562 9101_ $$0I:(DE-HGF)0$$60000-0001-7613-7028$$aExternal Institute$$b5$$kExtern
000890562 9101_ $$0I:(DE-HGF)0$$60000-0003-1855-7619$$aExternal Institute$$b6$$kExtern
000890562 9101_ $$0I:(DE-HGF)0$$60000-0003-0866-1930$$aExternal Institute$$b7$$kExtern
000890562 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000890562 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890562 9141_ $$y2021
000890562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890562 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2018$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2018$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000890562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000890562 920__ $$lyes
000890562 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000890562 980__ $$ajournal
000890562 980__ $$aVDB
000890562 980__ $$aUNRESTRICTED
000890562 980__ $$aI:(DE-Juel1)IBI-4-20200312
000890562 9801_ $$aFullTexts