001     890562
005     20210623133349.0
024 7 _ |a 10.1021/acsmacrolett.0c00834
|2 doi
024 7 _ |a 2128/27443
|2 Handle
024 7 _ |a WOS:000636739700003
|2 WOS
037 _ _ |a FZJ-2021-01043
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Burger, Nikolaos A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stabilization of Supramolecular Polymer Phase at High Pressures
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616141641_4228
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We utilize dynamic light scattering (DLS) and passive microrheology to examine the phase behavior of a supramolecular polymer at very high pressures. The monomer, 2,4-bis(2-ethylhexylureido)toluene (EHUT), self-assembles into supramolecular polymeric structures in the nonpolar solvent cyclohexane by means of hydrogen bonding. By varying the concentration and temperature at atmospheric pressure, the formation of the viscoelastic network (at lower temperatures) and predominantly viscous phases, based on self-assembled tube and filament structures, respectively, has been established. The associated changes in the rheological properties have been attributed to a structural thickness transition. Here, we investigate the effects of pressure variation from atmospheric up to 1 kbar at a given concentration. We construct a temperature–pressure diagram that reveals the predominance of the viscoelastic network phase at high pressures. The transition from the viscoelastic network organization of the tubes to a weaker viscous-dominated structure of the filaments is rationalized by using the Clapeyron equation, which yields an associated volume change of about 8 Å3 per EHUT molecule. This change is further explained by means of Molecular Dynamics simulations of the two phases, which show a decrease in the molecular volume at the filament-tube transition, originating from increased intermolecular contacts in the tube with respect to the filament. These findings offer insights into the role of pressure in stabilizing self-assemblies.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mavromanolakis, Antonios
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meier, G.
|0 P:(DE-Juel1)130829
|b 2
700 1 _ |a Brocorens, Patrick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lazzaroni, Roberto
|0 0000-0002-6334-4068
|b 4
700 1 _ |a Bouteiller, Laurent
|0 0000-0001-7613-7028
|b 5
700 1 _ |a Loppinet, Benoit
|0 0000-0003-1855-7619
|b 6
700 1 _ |a Vlassopoulos, Dimitris
|0 0000-0003-0866-1930
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsmacrolett.0c00834
|g p. 321 - 326
|0 PERI:(DE-600)2644375-2
|n 3
|p 321 - 326
|t ACS Macro Letters
|v 10
|y 2021
|x 2161-1653
856 4 _ |y Published on 2021-02-08. Available in OpenAccess from 2022-02-08.
|u https://juser.fz-juelich.de/record/890562/files/EHUT%20MACRO%20LETT%20final.pdf
856 4 _ |y Published on 2021-02-08. Available in OpenAccess from 2022-02-08.
|u https://juser.fz-juelich.de/record/890562/files/SI%20EHUT%20macro%20letters%20revised.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890562/files/acsmacrolett.0c00834.pdf
909 C O |o oai:juser.fz-juelich.de:890562
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130829
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-6334-4068
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-7613-7028
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0003-1855-7619
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0003-0866-1930
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Functional Macromolecules and Complexes
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-09-08
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS MACRO LETT : 2018
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS MACRO LETT : 2018
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21