000890612 001__ 890612 000890612 005__ 20210706160309.0 000890612 0247_ $$2doi$$a10.1088/1748-0221/16/01/P01016 000890612 0247_ $$2Handle$$a2128/27211 000890612 0247_ $$2altmetric$$aaltmetric:85339047 000890612 0247_ $$2WOS$$aWOS:000663343100023 000890612 037__ $$aFZJ-2021-01073 000890612 041__ $$aEnglish 000890612 082__ $$a610 000890612 1001_ $$0P:(DE-HGF)0$$aRebber, H.$$b0 000890612 245__ $$aParticle identification at MeV energies in JUNO 000890612 260__ $$aLondon$$bInst. of Physics$$c2021 000890612 3367_ $$2DRIVER$$aarticle 000890612 3367_ $$2DataCite$$aOutput Types/Journal article 000890612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613746599_8235 000890612 3367_ $$2BibTeX$$aARTICLE 000890612 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890612 3367_ $$00$$2EndNote$$aJournal Article 000890612 520__ $$aJUNO is a multi-purpose neutrino experiment currently under construction in Jiangmen, China. It is primary aiming to determine the neutrino mass ordering. Moreover, its 20 kt target mass makes it an ideal detector to study neutrinos from various sources, including nuclear reactors, the Earth and its atmosphere, the Sun, and even supernovae. Due to the small cross section of neutrino interactions, the event rate of neutrino experiments is limited. In order to maximize the signal-to-noise ratio, it is extremely important to control the background levels. In this paper we discuss the potential of particle identification in JUNO, its underlying principles and possible areas of application in the experiment. While the presented concepts can be transferred to any large liquid scintillator detector, our methods are evaluated specifically for JUNO and the results are mainly driven by its high optical photon yield of 1,200 photo electrons per MeV of deposited energy. In order to investigate the potential of event discrimination, several event pairings are analysed, i.e. $\alpha/\beta$, $p/β$, $e^+/e^−$, and $e^−/\gamma$. We compare the discrimination performance of advanced analytical techniques based on neural networks and on the topological event reconstruction keeping the standard Gatti filter as a reference. We use the Monte Carlo samples generated in the physically motivated energy intervals. We study the dependence of our cuts on energy, radial position, PMT time resolution, and dark noise. The results show an excellent performance for $α/β$ and $p/β$ with the Gatti method and the neural network. Furthermore, $e^+/e^−$ and $e^−/γ$ can partly be distinguished by means of neural network and topological reconstruction on a statistical basis. Especially in the latter case, the topological method proved very successful. 000890612 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0 000890612 588__ $$aDataset connected to CrossRef 000890612 7001_ $$0P:(DE-Juel1)168122$$aLudhova, L.$$b1$$eCorresponding author$$ufzj 000890612 7001_ $$0P:(DE-HGF)0$$aWonsak, B.$$b2 000890612 7001_ $$0P:(DE-Juel1)171744$$aXu, Yu$$b3 000890612 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/16/01/P01016$$gVol. 16, no. 01, p. P01016 - P01016$$n01$$pP01016 - P01016$$tJournal of Instrumentation$$v16$$x1748-0221$$y2021 000890612 8564_ $$uhttps://juser.fz-juelich.de/record/890612/files/2007.02687.pdf$$yOpenAccess 000890612 909CO $$ooai:juser.fz-juelich.de:890612$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890612 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168122$$aForschungszentrum Jülich$$b1$$kFZJ 000890612 9130_ $$0G:(DE-HGF)POF3-612$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vCosmic Matter in the Laboratory$$x0 000890612 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0 000890612 9141_ $$y2021 000890612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INSTRUM : 2018$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25 000890612 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger 000890612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25 000890612 920__ $$lyes 000890612 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0 000890612 980__ $$ajournal 000890612 980__ $$aVDB 000890612 980__ $$aUNRESTRICTED 000890612 980__ $$aI:(DE-Juel1)IKP-2-20111104 000890612 9801_ $$aFullTexts