001     890616
005     20220930130307.0
024 7 _ |a 10.1093/neuonc/noab013
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a 2128/27922
|2 Handle
024 7 _ |a altmetric:99418310
|2 altmetric
024 7 _ |a 33538838
|2 pmid
024 7 _ |a WOS:000704008200008
|2 WOS
037 _ _ |a FZJ-2021-01076
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
245 _ _ |a Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1623238060_15860
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niyazi, Maximilian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grosu, Anca L
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 3
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 4
700 1 _ |a Law, Ian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Minniti, Giuseppe
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kim, Michelle M
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tsien, Christina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dhermain, Frederic
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Soffietti, Riccardo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mehta, Minesh P
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Weller, Michael
|0 0000-0002-1748-174X
|b 12
700 1 _ |a Tonn, Jörg-Christian
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1093/neuonc/noab013
|g p. noab013
|0 PERI:(DE-600)2094060-9
|n 6
|p 881–893
|t Neuro-Oncology
|v 23
|y 2021
|x 1523-5866
856 4 _ |u https://juser.fz-juelich.de/record/890616/files/Invoice-E14341918.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890616/files/noab013.pdf
856 4 _ |y Published on 2021-02-04. Available in OpenAccess from 2022-02-04.
|u https://juser.fz-juelich.de/record/890616/files/Galldiks_2021_NeuroOncol_Contribution%20of%20PET%20imaigng%20to%20radiotherapy...post%20print.pdf
909 C O |o oai:juser.fz-juelich.de:890616
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131777
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2018
|d 2020-08-32
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURO-ONCOLOGY : 2018
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-32
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21