000890631 001__ 890631
000890631 005__ 20220930130307.0
000890631 0247_ $$2doi$$a10.1186/s12934-021-01539-w
000890631 0247_ $$2Handle$$a2128/27205
000890631 0247_ $$2altmetric$$aaltmetric:100393273
000890631 0247_ $$2pmid$$a33596923
000890631 0247_ $$2WOS$$aWOS:000620983800004
000890631 037__ $$aFZJ-2021-01086
000890631 082__ $$a570
000890631 1001_ $$0P:(DE-Juel1)174233$$aKüsters, Kira$$b0
000890631 245__ $$aConstruction and comprehensive characterization of an EcLDCc-CatIB set - varying linkers and aggregation inducing tags
000890631 260__ $$aLondon$$bBiomed Central$$c2021
000890631 3367_ $$2DRIVER$$aarticle
000890631 3367_ $$2DataCite$$aOutput Types/Journal article
000890631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638249849_15499
000890631 3367_ $$2BibTeX$$aARTICLE
000890631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890631 3367_ $$00$$2EndNote$$aJournal Article
000890631 520__ $$aBackgroundIn recent years, the production of inclusion bodies that retained substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) were formed by genetic fusion of an aggregation inducing tag to a gene of interest via short linker polypeptides and overproduction of the resulting gene fusion in Escherichia coli. The resulting CatIBs are known for their high stability, easy and cost efficient production, and recyclability and thus provide an interesting alternative to conventionally immobilized enzymes.ResultsHere, we present the construction and characterization of a CatIB set of the lysine decarboxylase from Escherichia coli (EcLDCc), constructed via Golden Gate Assembly. A total of ten EcLDCc variants consisting of combinations of two linker and five aggregation inducing tag sequences were generated. A flexible Serine/Glycine (SG)- as well as a rigid Proline/Threonine (PT)-Linker were tested in combination with the artificial peptides (18AWT, L6KD and GFIL8) or the coiled-coil domains (TDoT and 3HAMP) as aggregation inducing tags. The linkers were fused to the C-terminus of the EcLDCc to form a linkage between the enzyme and the aggregation inducing tags. Comprehensive morphology and enzymatic activity analyses were performed for the ten EcLDCc-CatIB variants and a wild type EcLDCc control to identify the CatIB variant with the highest activity for the decarboxylation of l-lysine to 1,5-diaminopentane. Interestingly, all of the CatIB variants possessed at least some activity, whilst most of the combinations with the rigid PT-Linker showed the highest conversion rates. EcLDCc-PT-L6KD was identified as the best of all variants allowing a volumetric productivity of 457 g L− 1 d− 1 and a specific volumetric productivity of 256 g L− 1 d− 1 gCatIB−1. Noteworthy, wild type EcLDCc, without specific aggregation inducing tags, also partially formed CatIBs, which, however showed lower activity compared to most of the newly constructed CatIB variants (volumetric productivity: 219 g L− 1 d− 1, specific volumetric activity: 106 g L− 1 d− 1 gCatIB− 1). Furthermore, we demonstrate that microscopic analysis can serve as a tool to find CatIB producing strains and thus allow for prescreening at an early stage to save time and resources.ConclusionsOur results clearly show that the choice of linker and aggregation inducing tag has a strong influence on the morphology and the enzymatic activity of the CatIBs. Strikingly, the linker had the most pronounced influence on these characteristics.
000890631 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890631 588__ $$aDataset connected to CrossRef
000890631 7001_ $$0P:(DE-Juel1)131522$$aPohl, Martina$$b1
000890631 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b2
000890631 7001_ $$0P:(DE-Juel1)176852$$aÖlçücü, Gizem$$b3
000890631 7001_ $$0P:(DE-Juel1)179224$$aAlbert, Sandor$$b4
000890631 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b5
000890631 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b6
000890631 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b7$$eCorresponding author
000890631 773__ $$0PERI:(DE-600)2091377-1$$a10.1186/s12934-021-01539-w$$gVol. 20, no. 1, p. 49$$n1$$p49$$tMicrobial cell factories$$v20$$x1475-2859$$y2021
000890631 8564_ $$uhttps://juser.fz-juelich.de/record/890631/files/s12934-021-01539-w.pdf$$yOpenAccess
000890631 8767_ $$8SN-2021-00411-b$$92021-06-18$$d2021-06-21$$eAPC$$jDEAL$$lDEAL: Springer
000890631 909CO $$ooai:juser.fz-juelich.de:890631$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174233$$aForschungszentrum Jülich$$b0$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131522$$aForschungszentrum Jülich$$b1$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b2$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176852$$aForschungszentrum Jülich$$b3$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b5$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b6$$kFZJ
000890631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b7$$kFZJ
000890631 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890631 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890631 9141_ $$y2021
000890631 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROB CELL FACT : 2018$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890631 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-10
000890631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-10
000890631 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000890631 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000890631 980__ $$ajournal
000890631 980__ $$aVDB
000890631 980__ $$aI:(DE-Juel1)IBG-1-20101118
000890631 980__ $$aI:(DE-Juel1)IMET-20090612
000890631 980__ $$aAPC
000890631 980__ $$aUNRESTRICTED
000890631 9801_ $$aAPC
000890631 9801_ $$aFullTexts