001     890631
005     20220930130307.0
024 7 _ |a 10.1186/s12934-021-01539-w
|2 doi
024 7 _ |a 2128/27205
|2 Handle
024 7 _ |a altmetric:100393273
|2 altmetric
024 7 _ |a 33596923
|2 pmid
024 7 _ |a WOS:000620983800004
|2 WOS
037 _ _ |a FZJ-2021-01086
082 _ _ |a 570
100 1 _ |a Küsters, Kira
|0 P:(DE-Juel1)174233
|b 0
245 _ _ |a Construction and comprehensive characterization of an EcLDCc-CatIB set - varying linkers and aggregation inducing tags
260 _ _ |a London
|c 2021
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638249849_15499
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundIn recent years, the production of inclusion bodies that retained substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) were formed by genetic fusion of an aggregation inducing tag to a gene of interest via short linker polypeptides and overproduction of the resulting gene fusion in Escherichia coli. The resulting CatIBs are known for their high stability, easy and cost efficient production, and recyclability and thus provide an interesting alternative to conventionally immobilized enzymes.ResultsHere, we present the construction and characterization of a CatIB set of the lysine decarboxylase from Escherichia coli (EcLDCc), constructed via Golden Gate Assembly. A total of ten EcLDCc variants consisting of combinations of two linker and five aggregation inducing tag sequences were generated. A flexible Serine/Glycine (SG)- as well as a rigid Proline/Threonine (PT)-Linker were tested in combination with the artificial peptides (18AWT, L6KD and GFIL8) or the coiled-coil domains (TDoT and 3HAMP) as aggregation inducing tags. The linkers were fused to the C-terminus of the EcLDCc to form a linkage between the enzyme and the aggregation inducing tags. Comprehensive morphology and enzymatic activity analyses were performed for the ten EcLDCc-CatIB variants and a wild type EcLDCc control to identify the CatIB variant with the highest activity for the decarboxylation of l-lysine to 1,5-diaminopentane. Interestingly, all of the CatIB variants possessed at least some activity, whilst most of the combinations with the rigid PT-Linker showed the highest conversion rates. EcLDCc-PT-L6KD was identified as the best of all variants allowing a volumetric productivity of 457 g L− 1 d− 1 and a specific volumetric productivity of 256 g L− 1 d− 1 gCatIB−1. Noteworthy, wild type EcLDCc, without specific aggregation inducing tags, also partially formed CatIBs, which, however showed lower activity compared to most of the newly constructed CatIB variants (volumetric productivity: 219 g L− 1 d− 1, specific volumetric activity: 106 g L− 1 d− 1 gCatIB− 1). Furthermore, we demonstrate that microscopic analysis can serve as a tool to find CatIB producing strains and thus allow for prescreening at an early stage to save time and resources.ConclusionsOur results clearly show that the choice of linker and aggregation inducing tag has a strong influence on the morphology and the enzymatic activity of the CatIBs. Strikingly, the linker had the most pronounced influence on these characteristics.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pohl, Martina
|0 P:(DE-Juel1)131522
|b 1
700 1 _ |a Krauss, Ulrich
|0 P:(DE-Juel1)131482
|b 2
700 1 _ |a Ölçücü, Gizem
|0 P:(DE-Juel1)176852
|b 3
700 1 _ |a Albert, Sandor
|0 P:(DE-Juel1)179224
|b 4
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 5
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 6
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 7
|e Corresponding author
773 _ _ |a 10.1186/s12934-021-01539-w
|g Vol. 20, no. 1, p. 49
|0 PERI:(DE-600)2091377-1
|n 1
|p 49
|t Microbial cell factories
|v 20
|y 2021
|x 1475-2859
856 4 _ |u https://juser.fz-juelich.de/record/890631/files/s12934-021-01539-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890631
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131522
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131482
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROB CELL FACT : 2018
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-10
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21