000890646 001__ 890646
000890646 005__ 20220930130307.0
000890646 0247_ $$2doi$$a10.1002/vzj2.20099
000890646 0247_ $$2Handle$$a2128/28305
000890646 0247_ $$2altmetric$$aaltmetric:100020899
000890646 0247_ $$2WOS$$aWOS:000674053400011
000890646 037__ $$aFZJ-2021-01096
000890646 082__ $$a550
000890646 1001_ $$0P:(DE-Juel1)145932$$aHebel, Christian$$b0$$eCorresponding author
000890646 245__ $$aToward high‐resolution agronomic soil information and management zones delineated by ground‐based electromagnetic induction and aerial drone data
000890646 260__ $$aHoboken, NJ$$bWiley$$c2021
000890646 3367_ $$2DRIVER$$aarticle
000890646 3367_ $$2DataCite$$aOutput Types/Journal article
000890646 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639038548_7732
000890646 3367_ $$2BibTeX$$aARTICLE
000890646 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890646 3367_ $$00$$2EndNote$$aJournal Article
000890646 520__ $$aDetailed knowledge of the intra-field variability of soil properties and crop characteristics is indispensable for the establishment of sustainable precision agriculture. We present an approach that combines ground-based agrogeophysical soil and aerial crop data to delineate field-specific management zones that we interpret with soil attribute measurements of texture, bulk density, and soil moisture, as well as yield and nitrate residue in the soil after potato (Solanum tuberosum L.) cultivation. To delineate the management zones, we use aerial drone-based normalized difference vegetation index (NDVI), spatial electromagnetic induction (EMI) soil scanning, and the EMI–NDVI data combination as input in a machine learning clustering technique. We tested this approach in three successive years on six agricultural fields (two per year). The field-scale EMI data included spatial soil information of the upper 0–50 cm, to approximately match the soil depth sampled for attribute measurements. The NDVI measurements over the growing season provide information on crop development. The management zones delineated from EMI data outperformed the management zones derived from NDVI in terms of spatial coherence and showed differences in properties relevant for agricultural management: texture, soil moisture deficit, yield, and nitrate residue. The combined EMI–NDVI analysis provided no extra benefit. This underpins the importance of including spatially distributed soil information in crop data interpretation, while emphasizing that high-resolution soil information is essential for variable rate applications and agronomic modeling.
000890646 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890646 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000890646 588__ $$aDataset connected to CrossRef
000890646 7001_ $$0P:(DE-HGF)0$$aReynaert, Sophie$$b1
000890646 7001_ $$00000-0002-2183-1917$$aPauly, Klaas$$b2
000890646 7001_ $$00000-0001-7571-396X$$aJanssens, Pieter$$b3
000890646 7001_ $$00000-0002-1530-8468$$aPiccard, Isabelle$$b4
000890646 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b5
000890646 7001_ $$0P:(DE-Juel1)129561$$aKruk, Jan$$b6
000890646 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7
000890646 7001_ $$0P:(DE-Juel1)129457$$aGarré, Sarah$$b8
000890646 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20099$$n4$$pe20099$$tVadose zone journal$$v20$$x1539-1663$$y2021
000890646 8564_ $$uhttps://juser.fz-juelich.de/record/890646/files/document.pdf
000890646 8564_ $$uhttps://juser.fz-juelich.de/record/890646/files/vzj2.20099.pdf$$yOpenAccess
000890646 8767_ $$d2021-02-19$$eAPC$$jDEAL$$lDEAL: Wiley$$zBelegnr. 1200164094
000890646 909CO $$ooai:juser.fz-juelich.de:890646$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000890646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145932$$aForschungszentrum Jülich$$b0$$kFZJ
000890646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b5$$kFZJ
000890646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b6$$kFZJ
000890646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000890646 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890646 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000890646 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890646 9141_ $$y2021
000890646 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000890646 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890646 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2018$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-28$$wger
000890646 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890646 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000890646 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000890646 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890646 980__ $$ajournal
000890646 980__ $$aVDB
000890646 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890646 980__ $$aAPC
000890646 980__ $$aUNRESTRICTED
000890646 9801_ $$aAPC
000890646 9801_ $$aFullTexts