001     890686
005     20230111074329.0
024 7 _ |a 10.1140/epja/s10050-020-00319-1
|2 doi
024 7 _ |a 0939-7922
|2 ISSN
024 7 _ |a 1431-5831
|2 ISSN
024 7 _ |a 1434-6001
|2 ISSN
024 7 _ |a 1434-601X
|2 ISSN
024 7 _ |a 2128/30556
|2 Handle
024 7 _ |a altmetric:88419414
|2 altmetric
024 7 _ |a WOS:000610440300001
|2 WOS
037 _ _ |a FZJ-2021-01128
082 _ _ |a 530
100 1 _ |a Stellin, Gianluca
|0 0000-0003-1711-6790
|b 0
|e Corresponding author
245 _ _ |a P-wave two-particle bound and scattering states in a finite volume including QED
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1644939291_25417
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The mass shifts for two-fermion bound and scattering P-wave states subject to the long-range interactions due to QED in the non-relativistic regime are derived. Introducing a short range force coupling the spinless fermions to one unit of angular momentum in the framework of pionless EFT, we first calculate both perturbatively and non-perturbatively the Coulomb corrections to fermion-fermion scattering in the continuum and infinite volume context. Motivated by the research on particle-antiparticle bound states, we extend the results to fermions of identical mass and opposite charge. Second, we transpose the system onto a cubic lattice with periodic boundary conditions and we calculate the finite volume corrections to the energy of the lowest bound and unbound $T^±_1$ eigenstates. In particular, power law corrections proportional to the fine structure constant and resembling the recent results for S-wave states are found. Higher order contributions in $α$ are neglected, since the gapped nature of the momentum operator in the lattice environnement allows for a perturbative treatment of the QED interactions.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Nuclear Lattice Simulations (jara0015_20200501)
|0 G:(DE-Juel1)jara0015_20200501
|c jara0015_20200501
|f Nuclear Lattice Simulations
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meißner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 1
773 _ _ |a 10.1140/epja/s10050-020-00319-1
|g Vol. 57, no. 1, p. 26
|0 PERI:(DE-600)1459066-9
|n 1
|p 26
|t The European physical journal / A
|v 57
|y 2021
|x 1434-601X
856 4 _ |u https://juser.fz-juelich.de/record/890686/files/Stellin-Mei%C3%9Fner2021_Article_P-waveTwo-particleBoundAndScat.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890686
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J A : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21