000890687 001__ 890687
000890687 005__ 20210325175531.0
000890687 0247_ $$2doi$$a10.1103/PhysRevLett.126.032501
000890687 0247_ $$2ISSN$$a0031-9007
000890687 0247_ $$2ISSN$$a1079-7114
000890687 0247_ $$2ISSN$$a1092-0145
000890687 037__ $$aFZJ-2021-01129
000890687 082__ $$a530
000890687 1001_ $$00000-0003-2882-5138$$aSarkar, Avik$$b0
000890687 245__ $$aConvergence of Eigenvector Continuation
000890687 260__ $$aCollege Park, Md.$$bAPS$$c2021
000890687 3367_ $$2DRIVER$$aarticle
000890687 3367_ $$2DataCite$$aOutput Types/Journal article
000890687 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616691285_5562
000890687 3367_ $$2BibTeX$$aARTICLE
000890687 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890687 3367_ $$00$$2EndNote$$aJournal Article
000890687 520__ $$aEigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of eigenvectors corresponding to selected training values of the control parameters. The method has proven to be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is known about how the method converges, and its rapid convergence properties have remained mysterious. In this Letter, we present the first study of the convergence of eigenvector continuation. In order to perform the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector continuation. We first prove that eigenvector continuation and vector continuation have identical convergence properties and then analyze the convergence of vector continuation. Our analysis shows that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster convergence is achieved by eliminating a phenomenon that we call differential folding, the interference between nonorthogonal vectors appearing at different orders in perturbation theory. From our analysis we can predict how eigenvector continuation converges both inside and outside the radius of convergence of perturbation theory. While eigenvector continuation is a nonperturbative method, we show that its rate of convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new insights into the nature of divergences in perturbation theory.
000890687 536__ $$0G:(DE-Juel1)jara0015_20200501$$aNuclear Lattice Simulations (jara0015_20200501)$$cjara0015_20200501$$fNuclear Lattice Simulations$$x0
000890687 588__ $$aDataset connected to CrossRef
000890687 7001_ $$aLee, Dean$$b1
000890687 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.126.032501$$gVol. 126, no. 3, p. 032501$$n3$$p032501$$tPhysical review letters$$v126$$x1079-7114$$y2021
000890687 909CO $$ooai:juser.fz-juelich.de:890687$$pextern4vita
000890687 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890687 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000890687 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000890687 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-08-32
000890687 920__ $$lno
000890687 980__ $$ajournal
000890687 980__ $$aEDITORS
000890687 980__ $$aI:(DE-Juel1)NIC-20090406
000890687 980__ $$aI:(DE-Juel1)JSC-20090406
000890687 980__ $$aI:(DE-82)080012_20140620
000890687 9801_ $$aEXTERN4VITA