001     890687
005     20210325175531.0
024 7 _ |a 10.1103/PhysRevLett.126.032501
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
037 _ _ |a FZJ-2021-01129
082 _ _ |a 530
100 1 _ |a Sarkar, Avik
|0 0000-0003-2882-5138
|b 0
245 _ _ |a Convergence of Eigenvector Continuation
260 _ _ |a College Park, Md.
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616691285_5562
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Eigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of eigenvectors corresponding to selected training values of the control parameters. The method has proven to be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is known about how the method converges, and its rapid convergence properties have remained mysterious. In this Letter, we present the first study of the convergence of eigenvector continuation. In order to perform the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector continuation. We first prove that eigenvector continuation and vector continuation have identical convergence properties and then analyze the convergence of vector continuation. Our analysis shows that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster convergence is achieved by eliminating a phenomenon that we call differential folding, the interference between nonorthogonal vectors appearing at different orders in perturbation theory. From our analysis we can predict how eigenvector continuation converges both inside and outside the radius of convergence of perturbation theory. While eigenvector continuation is a nonperturbative method, we show that its rate of convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new insights into the nature of divergences in perturbation theory.
536 _ _ |a Nuclear Lattice Simulations (jara0015_20200501)
|0 G:(DE-Juel1)jara0015_20200501
|c jara0015_20200501
|f Nuclear Lattice Simulations
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lee, Dean
|b 1
773 _ _ |a 10.1103/PhysRevLett.126.032501
|g Vol. 126, no. 3, p. 032501
|0 PERI:(DE-600)1472655-5
|n 3
|p 032501
|t Physical review letters
|v 126
|y 2021
|x 1079-7114
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:890687
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2018
|d 2020-08-32
920 _ _ |l no
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a EXTERN4VITA


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21