000890689 001__ 890689
000890689 005__ 20230217124413.0
000890689 0247_ $$2doi$$a10.1103/PhysRevA.101.063615
000890689 0247_ $$2ISSN$$a0556-2791
000890689 0247_ $$2ISSN$$a1050-2947
000890689 0247_ $$2ISSN$$a1094-1622
000890689 0247_ $$2ISSN$$a1538-4446
000890689 0247_ $$2ISSN$$a2469-9926
000890689 0247_ $$2ISSN$$a2469-9934
000890689 0247_ $$2ISSN$$a2469-9942
000890689 037__ $$aFZJ-2021-01131
000890689 082__ $$a530
000890689 1001_ $$aHe, Rongzheng$$b0
000890689 245__ $$aSuperfluid condensate fraction and pairing wave function of the unitary Fermi gas
000890689 260__ $$aWoodbury, NY$$bInst.$$c2020
000890689 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-06-11
000890689 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-06-01
000890689 3367_ $$2DRIVER$$aarticle
000890689 3367_ $$2DataCite$$aOutput Types/Journal article
000890689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616692233_18977
000890689 3367_ $$2BibTeX$$aARTICLE
000890689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890689 3367_ $$00$$2EndNote$$aJournal Article
000890689 520__ $$aThe unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned to infinite scattering length. Despite much activity and interest in unitary Fermi gases and its universal properties, there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and pairing wave function. In this work we present auxiliary-field lattice Monte Carlo simulations using a novel lattice interaction which accelerates the approach to the continuum limit, thereby allowing for robust calculations of these difficult observables. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down particles. As a fraction of the free Fermi gas energy $E_{FG}$, we find $E_0/E_{FG}=0.369(2),0.372(2)$, using two different definitions of the finite-system energy ratio, in agreement with the latest theoretical and experimental results. We then determine the condensate fraction by measuring off-diagonal long-range order in the two-body density matrix. We find that the fraction of condensed pairs is $α=0.43(2)$. We also extract the pairing wave function and find the pair correlation length to be $ζ_pk_F=1.8(3)ℏ$, where $k_F$ is the Fermi momentum. Provided that the simulations can be performed without severe sign oscillations, the methods we present here can be applied to superfluid neutron matter as well as more exotic P-wave and D-wave superfluids.
000890689 536__ $$0G:(DE-Juel1)jara0015_20200501$$aNuclear Lattice Simulations (jara0015_20200501)$$cjara0015_20200501$$fNuclear Lattice Simulations$$x0
000890689 542__ $$2Crossref$$i2020-06-11$$uhttps://link.aps.org/licenses/aps-default-license
000890689 588__ $$aDataset connected to CrossRef
000890689 7001_ $$0P:(DE-Juel1)159474$$aLi, Ning$$b1
000890689 7001_ $$aLu, Bing-Nan$$b2
000890689 7001_ $$aLee, Dean$$b3
000890689 77318 $$2Crossref$$3journal-article$$a10.1103/physreva.101.063615$$bAmerican Physical Society (APS)$$d2020-06-11$$n6$$p063615$$tPhysical Review A$$v101$$x2469-9926$$y2020
000890689 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.101.063615$$gVol. 101, no. 6, p. 063615$$n6$$p063615$$tPhysical review / A$$v101$$x2469-9926$$y2020
000890689 909CO $$ooai:juser.fz-juelich.de:890689$$pextern4vita
000890689 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2018$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000890689 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000890689 920__ $$lno
000890689 980__ $$ajournal
000890689 980__ $$aEDITORS
000890689 980__ $$aI:(DE-Juel1)NIC-20090406
000890689 980__ $$aI:(DE-Juel1)JSC-20090406
000890689 980__ $$aI:(DE-82)080012_20140620
000890689 9801_ $$aEXTERN4VITA
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.186.456
000890689 999C5 $$1A. J. Leggett$$2Crossref$$oA. J. Leggett Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980 1980$$tModern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980$$y1980
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00683774
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1079107
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1122876
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.68.011401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.050401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.120401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1109220
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.250404
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.220406
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10909-008-9850-2
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1187582
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08814
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1214987
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.15153
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.60.054311
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.63.043606
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.100404
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2005.08.006
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.72.041603
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.050403
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.023610
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.043614
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.043605
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.063617
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0256-307X/24/7/011
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.79.013627
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.87.023615
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.050401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.70.043602
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.200404
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.060401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.73.015202
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.090404
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.115112
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/9/6/163
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2008-10537-2
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.78.024001
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.78.023625
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.79.054003
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.210403
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.83.041601
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.235303
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.84.061602
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.84.023615
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.134502
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/14786445108560954
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.104.576
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.34.694
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.120403
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.180401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.040403
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.72.043611
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.72.023621
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.75.033609
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.230405
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.81.033619
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.134863
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ppnp.2008.12.001
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-14189-9_1
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.83.063619
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.206401
000890689 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.090604
000890689 999C5 $$1J. Annett$$2Crossref$$oJ. Annett Superconductivity, Superfluids and Condensates 2004$$tSuperconductivity, Superfluids and Condensates$$y2004