001     890689
005     20230217124413.0
024 7 _ |a 10.1103/PhysRevA.101.063615
|2 doi
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 2469-9926
|2 ISSN
024 7 _ |a 2469-9934
|2 ISSN
024 7 _ |a 2469-9942
|2 ISSN
037 _ _ |a FZJ-2021-01131
082 _ _ |a 530
100 1 _ |a He, Rongzheng
|b 0
245 _ _ |a Superfluid condensate fraction and pairing wave function of the unitary Fermi gas
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2020-06-11
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2020-06-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616692233_18977
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned to infinite scattering length. Despite much activity and interest in unitary Fermi gases and its universal properties, there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and pairing wave function. In this work we present auxiliary-field lattice Monte Carlo simulations using a novel lattice interaction which accelerates the approach to the continuum limit, thereby allowing for robust calculations of these difficult observables. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down particles. As a fraction of the free Fermi gas energy $E_{FG}$, we find $E_0/E_{FG}=0.369(2),0.372(2)$, using two different definitions of the finite-system energy ratio, in agreement with the latest theoretical and experimental results. We then determine the condensate fraction by measuring off-diagonal long-range order in the two-body density matrix. We find that the fraction of condensed pairs is $α=0.43(2)$. We also extract the pairing wave function and find the pair correlation length to be $ζ_pk_F=1.8(3)ℏ$, where $k_F$ is the Fermi momentum. Provided that the simulations can be performed without severe sign oscillations, the methods we present here can be applied to superfluid neutron matter as well as more exotic P-wave and D-wave superfluids.
536 _ _ |a Nuclear Lattice Simulations (jara0015_20200501)
|0 G:(DE-Juel1)jara0015_20200501
|c jara0015_20200501
|f Nuclear Lattice Simulations
|x 0
542 _ _ |i 2020-06-11
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)159474
|b 1
700 1 _ |a Lu, Bing-Nan
|b 2
700 1 _ |a Lee, Dean
|b 3
773 1 8 |a 10.1103/physreva.101.063615
|b American Physical Society (APS)
|d 2020-06-11
|n 6
|p 063615
|3 journal-article
|2 Crossref
|t Physical Review A
|v 101
|y 2020
|x 2469-9926
773 _ _ |a 10.1103/PhysRevA.101.063615
|g Vol. 101, no. 6, p. 063615
|0 PERI:(DE-600)2844156-4
|n 6
|p 063615
|t Physical review / A
|v 101
|y 2020
|x 2469-9926
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:890689
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV A : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
920 _ _ |l no
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a EXTERN4VITA
999 C 5 |a 10.1103/PhysRev.186.456
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. J. Leggett
|y 1980
|2 Crossref
|t Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980
|o A. J. Leggett Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980 1980
999 C 5 |a 10.1007/BF00683774
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1079107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1122876
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.68.011401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.050401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.120401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1109220
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.250404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.220406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10909-008-9850-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1187582
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature08814
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1214987
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.15153
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.60.054311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.63.043606
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.100404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nuclphysa.2005.08.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.72.041603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.050403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.75.023610
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.75.043614
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.75.043605
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.75.063617
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0256-307X/24/7/011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.79.013627
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.87.023615
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.050401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.70.043602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.200404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.060401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.73.015202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.090404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.115112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/9/6/163
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epja/i2008-10537-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.78.024001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.78.023625
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.79.054003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.210403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.83.041601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.235303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.84.061602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.84.023615
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.134502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/14786445108560954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.104.576
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.34.694
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.120403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.180401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.040403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.72.043611
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.72.023621
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.75.033609
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.230405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.81.033619
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physletb.2019.134863
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ppnp.2008.12.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-030-14189-9_1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.83.063619
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.206401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.090604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Annett
|y 2004
|2 Crossref
|t Superconductivity, Superfluids and Condensates
|o J. Annett Superconductivity, Superfluids and Condensates 2004


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21