Home > NIC > Superfluid condensate fraction and pairing wave function of the unitary Fermi gas > print |
001 | 890689 | ||
005 | 20230217124413.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevA.101.063615 |2 doi |
024 | 7 | _ | |a 0556-2791 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1538-4446 |2 ISSN |
024 | 7 | _ | |a 2469-9926 |2 ISSN |
024 | 7 | _ | |a 2469-9934 |2 ISSN |
024 | 7 | _ | |a 2469-9942 |2 ISSN |
037 | _ | _ | |a FZJ-2021-01131 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a He, Rongzheng |b 0 |
245 | _ | _ | |a Superfluid condensate fraction and pairing wave function of the unitary Fermi gas |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2020-06-11 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2020-06-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1616692233_18977 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned to infinite scattering length. Despite much activity and interest in unitary Fermi gases and its universal properties, there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and pairing wave function. In this work we present auxiliary-field lattice Monte Carlo simulations using a novel lattice interaction which accelerates the approach to the continuum limit, thereby allowing for robust calculations of these difficult observables. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down particles. As a fraction of the free Fermi gas energy $E_{FG}$, we find $E_0/E_{FG}=0.369(2),0.372(2)$, using two different definitions of the finite-system energy ratio, in agreement with the latest theoretical and experimental results. We then determine the condensate fraction by measuring off-diagonal long-range order in the two-body density matrix. We find that the fraction of condensed pairs is $α=0.43(2)$. We also extract the pairing wave function and find the pair correlation length to be $ζ_pk_F=1.8(3)ℏ$, where $k_F$ is the Fermi momentum. Provided that the simulations can be performed without severe sign oscillations, the methods we present here can be applied to superfluid neutron matter as well as more exotic P-wave and D-wave superfluids. |
536 | _ | _ | |a Nuclear Lattice Simulations (jara0015_20200501) |0 G:(DE-Juel1)jara0015_20200501 |c jara0015_20200501 |f Nuclear Lattice Simulations |x 0 |
542 | _ | _ | |i 2020-06-11 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Li, Ning |0 P:(DE-Juel1)159474 |b 1 |
700 | 1 | _ | |a Lu, Bing-Nan |b 2 |
700 | 1 | _ | |a Lee, Dean |b 3 |
773 | 1 | 8 | |a 10.1103/physreva.101.063615 |b American Physical Society (APS) |d 2020-06-11 |n 6 |p 063615 |3 journal-article |2 Crossref |t Physical Review A |v 101 |y 2020 |x 2469-9926 |
773 | _ | _ | |a 10.1103/PhysRevA.101.063615 |g Vol. 101, no. 6, p. 063615 |0 PERI:(DE-600)2844156-4 |n 6 |p 063615 |t Physical review / A |v 101 |y 2020 |x 2469-9926 |
909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:890689 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV A : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 |
920 | _ | _ | |l no |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a EXTERN4VITA |
999 | C | 5 | |a 10.1103/PhysRev.186.456 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 A. J. Leggett |y 1980 |2 Crossref |t Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980 |o A. J. Leggett Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980 1980 |
999 | C | 5 | |a 10.1007/BF00683774 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1079107 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1122876 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.68.011401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.050401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.120401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1109220 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.250404 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.97.220406 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s10909-008-9850-2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1187582 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature08814 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1214987 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.55.15153 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.60.054311 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.63.043606 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.100404 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysa.2005.08.006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.72.041603 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.97.050403 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.75.023610 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.75.043614 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.75.043605 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.75.063617 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0256-307X/24/7/011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.79.013627 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.87.023615 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.91.050401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.70.043602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.200404 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.060401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.73.015202 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.96.090404 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.73.115112 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/9/6/163 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2008-10537-2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.78.024001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.78.023625 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.79.054003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.103.210403 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.83.041601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.106.235303 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.84.061602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.84.023615 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.75.134502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1080/14786445108560954 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.104.576 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.34.694 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.120403 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.94.180401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.040403 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.72.043611 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.72.023621 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.75.033609 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.230405 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.81.033619 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2019.134863 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2008.12.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-3-030-14189-9_1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevA.83.063619 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.88.206401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.124.090604 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. Annett |y 2004 |2 Crossref |t Superconductivity, Superfluids and Condensates |o J. Annett Superconductivity, Superfluids and Condensates 2004 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|