000890691 001__ 890691
000890691 005__ 20250129094356.0
000890691 0247_ $$2Handle$$a2128/28112
000890691 037__ $$aFZJ-2021-01133
000890691 041__ $$aEnglish
000890691 1001_ $$0P:(DE-Juel1)171247$$aMaraytta, Nour$$b0$$eCorresponding author
000890691 1112_ $$aDigital Institute Seminar JCNS-2$$cForschungszentrum Jülich GmbH$$d2021-02-25 - 2021-02-25$$wGermany
000890691 245__ $$aStructure and Dynamics of Magnetocaloric Materials$$f2021-02-25 - 
000890691 260__ $$c2021
000890691 3367_ $$033$$2EndNote$$aConference Paper
000890691 3367_ $$2DataCite$$aOther
000890691 3367_ $$2BibTeX$$aINPROCEEDINGS
000890691 3367_ $$2ORCID$$aLECTURE_SPEECH
000890691 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1626077893_21252$$xInvited
000890691 3367_ $$2DINI$$aOther
000890691 520__ $$aThe search for more efficient use of energy has been leading to a growing interest in the research field of magnetocaloric materials. The magnetocaloric effect (MCE) describes the change of temperature or entropy of a material when exposed to a change of the magnetic field and forms the basis of magnetocaloric refrigeration technologies [1].In the last years there has been an upsurge in the knowledge of the MCE and many materials have been investigated for their MCE characteristics [2]. In the context of this talk, I will present the field direction dependence of the thermo-magnetic behavior in single crystalline compounds MnFe4Si3 and Mn5Ge3. The emphasis will be on the direct measurement of the adiabatic temperature change ΔTad in pulsed magnetic fields as it provides the opportunity to examine the sample temperature response to the magnetic field on a time scale close to the real process used in applications [3]. A discussion of how the anisotropy affects the magnetocaloric effect and a comparison between MnFe4Si3 compound, which exhibits easy plane anisotropy, and Mn5Ge3 which features uniaxial anisotropy, will be also presented [4].The Mn5Si3 compound exhibits inverse MCE related to the antiferromagnetic order phase transition AF1 to AF2, and direct MCE related to the AF2 to the paramagnetic phase transitions. Previous studies indicate a transition from the AF1 to AF1' before reaching the AF2 phase [5]. The magnetic structures of the AF1 and AF2 phases have been established [6, 7], while the magnetic structure of the AF1' phase has not been studied before. Therefore, the second part of the talk will be devoted to discuss the results of the investigation of the nuclear and magnetic structure of the intermediate phase AF1' of the single crystalline compound Mn5Si3.[1] K. A. Gschneidner Jr. and V.K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects”, International Journal of Refrigeration, 31, 945(2008).[2] V. Franco, J. S. Blazquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models”, Annual Review of Materials Research, 42, 305(2012).[3] N. Maraytta, Y. Skourski, J. Voigt, K. Friese, M. G. Herrmann, J. Perßon, J. Wosnitza, S. M. Salman, and T. Brückel, “Direct measurements of the magneto-caloric effect of MnFe4Si3 in pulsed magnetic fields”, Journal of Alloys and Compounds, 805, 1161(2019).[4] N. Maraytta, J. Voigt, C. S. Mejia, K. Friese, Y. Skourski, J. Perßon, S. M. Salman, and T. Brückel, “Anisotropy of the magnetocaloric effect: Example of Mn5Ge3”, Journal of Applied Physics, 128, 103903(2020).[5] M. R. Silva, P. J. Brown, and J. B. Forsyth, “Magnetic moments and magnetic site susceptibilities in Mn5Si3”, Journal of Physics: Condensed Matter, 14, 8707(2002).[6] P. J. Brown, J. B. Forsyth, V. Nunez, and F. Tasset, “The low-temperature antiferromagnetic structure of Mn5Si3 revised in the light of neutron polarimetry”, Journal of Physics: Condensed Matter, 4, 10025 (1992).[7] P. J. Brown and J. B. Forsyth, “Antiferromagnetism in Mn5Si3: The magnetic structure of the AF2 phase at 70 K”, Journal of Physics: Condensed Matter, 7, 7619(1995).
000890691 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000890691 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000890691 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000890691 8564_ $$uhttps://juser.fz-juelich.de/record/890691/files/Seminar_Abstract_Maraytta.pdf$$yOpenAccess
000890691 909CO $$ooai:juser.fz-juelich.de:890691$$pdriver$$pVDB$$popen_access$$popenaire
000890691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171247$$aForschungszentrum Jülich$$b0$$kFZJ
000890691 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000890691 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000890691 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000890691 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000890691 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000890691 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000890691 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000890691 9141_ $$y2021
000890691 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890691 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000890691 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000890691 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000890691 9801_ $$aFullTexts
000890691 980__ $$atalk
000890691 980__ $$aVDB
000890691 980__ $$aUNRESTRICTED
000890691 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000890691 980__ $$aI:(DE-Juel1)PGI-4-20110106
000890691 980__ $$aI:(DE-82)080009_20140620
000890691 981__ $$aI:(DE-Juel1)JCNS-2-20110106