000890726 001__ 890726
000890726 005__ 20240712084532.0
000890726 0247_ $$2doi$$a10.1002/aenm.202003386
000890726 0247_ $$2Handle$$a2128/27753
000890726 0247_ $$2altmetric$$aaltmetric:101662004
000890726 0247_ $$2WOS$$aWOS:000627073600001
000890726 037__ $$aFZJ-2021-01149
000890726 082__ $$a050
000890726 1001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b0$$ufzj
000890726 245__ $$aInterface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 Solar Cells
000890726 260__ $$aWeinheim$$bWiley-VCH$$c2021
000890726 3367_ $$2DRIVER$$aarticle
000890726 3367_ $$2DataCite$$aOutput Types/Journal article
000890726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620304186_24837
000890726 3367_ $$2BibTeX$$aARTICLE
000890726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890726 3367_ $$00$$2EndNote$$aJournal Article
000890726 520__ $$aNonradiative recombination processes are the biggest hindrance to approaching the radiative limit of the open‐circuit voltage for wide bandgap perovskite solar cells. In addition to high bulk quality, good interfaces and good energy level alignment for majority carriers at charge transport layer‐absorber interfaces are crucial to minimize nonradiative recombination pathways. By tuning the lowest‐unoccupied molecular‐orbital of electron transport layers via the use of different fullerenes and fullerene blends, open‐circuit voltages exceeding 1.35 V in CH3NH3Pb(I0.8Br0.2)3 device are demonstrated. Further optimization of mobility in binary fullerenes electron transport layers can boost the power conversion efficiency as high as 18.9%. It is noted in particular that the Voc fill factor product is >1.096 V, which is the highest value reported for halide perovskites with this bandgap.
000890726 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000890726 7001_ $$0P:(DE-Juel1)172068$$aSiekmann, Johanna$$b1$$eCorresponding author$$ufzj
000890726 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b2$$ufzj
000890726 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$ufzj
000890726 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b4$$eCorresponding author
000890726 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202003386$$n16$$p2003386$$tAdvanced energy materials$$v11$$x1614-6832$$y2021
000890726 8564_ $$uhttps://juser.fz-juelich.de/record/890726/files/aenm.202003386.pdf$$yOpenAccess
000890726 8767_ $$d2021-02-24$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000890726 909CO $$ooai:juser.fz-juelich.de:890726$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000890726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b0$$kFZJ
000890726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172068$$aForschungszentrum Jülich$$b1$$kFZJ
000890726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b2$$kFZJ
000890726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b3$$kFZJ
000890726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b4$$kFZJ
000890726 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890726 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890726 9141_ $$y2021
000890726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-27
000890726 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890726 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2018$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2018$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-27$$wger
000890726 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890726 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000890726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000890726 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000890726 9801_ $$aAPC
000890726 9801_ $$aFullTexts
000890726 980__ $$ajournal
000890726 980__ $$aVDB
000890726 980__ $$aUNRESTRICTED
000890726 980__ $$aI:(DE-Juel1)IEK-5-20101013
000890726 980__ $$aAPC
000890726 981__ $$aI:(DE-Juel1)IMD-3-20101013