001     890730
005     20240712084532.0
024 7 _ |a 10.1002/solr.202000576
|2 doi
024 7 _ |a 2128/30275
|2 Handle
024 7 _ |a WOS:000616487200001
|2 WOS
037 _ _ |a FZJ-2021-01153
082 _ _ |a 600
100 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 0
|e Corresponding author
245 _ _ |a Improved Infrared Light Management with Transparent Conductive Oxide/Amorphous Silicon Back Reflector in High‐Efficiency Silicon Heterojunction Solar Cells
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642415575_31326
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To improve the infrared (IR) response, a high-refractive-index intrinsic amorphous silicon (a-Si:H) layer is introduced after metallization of bifacial silicon heterojunction (SHJ) solar cells, resulting in a transparent conductive oxide (TCO)/a-Si:H back reflector, which functions like distributed Bragg reflector (DBR). This concept is demonstrated by both Sentaurus Technology Computer-Aided Design (TCAD) simulation and experimental methods. The TCO/a-Si:H back reflector can increase rear internal reflectance by reducing the transmission loss, thus improving the IR external quantum efficiency. The using of Sn-doped In2O3 (ITO)/a-Si:H back reflector in >23.5% efficiency SHJ solar cells can improve short-circuit current density by 0.4 mA cm2 which is quite similar as using the more expensive ITO/Ag back reflector, while keeping a cell bifaciality of 55%. This brings its advantage for monofacial application case. Future studies would be nice to work on higher transparent back reflectors to broaden the application in bifacial case. This back-reflector design promotes IR response of SHJ solar cells with transferring to a wide variety of TCOs.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben: Street - Einsatz von hocheffizienten Solarzellen in elektrisch betriebenen Nutzfahrzeugen; Teilvorhaben: Herstellung und Entwicklung von (0324275E)
|0 G:(BMWi)0324275E
|c 0324275E
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 1
|e Corresponding author
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 2
700 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 3
700 1 _ |a Yao, Zhirong
|0 P:(DE-Juel1)176774
|b 4
700 1 _ |a Steuter, Paul
|0 P:(DE-Juel1)179503
|b 5
700 1 _ |a Qiu, Depeng
|0 P:(DE-Juel1)173822
|b 6
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 7
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 8
773 _ _ |a 10.1002/solr.202000576
|g p. 2000576 -
|0 PERI:(DE-600)2882014-9
|n 3
|p 2000576
|t Solar RRL
|v 5
|y 2021
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/890730/files/published%20online.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890730
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21