000890763 001__ 890763
000890763 005__ 20240709082023.0
000890763 0247_ $$2doi$$a10.1016/j.jpowsour.2021.229631
000890763 0247_ $$2ISSN$$a0378-7753
000890763 0247_ $$2ISSN$$a1873-2755
000890763 0247_ $$2Handle$$a2128/27601
000890763 0247_ $$2WOS$$aWOS:000635066400002
000890763 037__ $$aFZJ-2021-01180
000890763 041__ $$aEnglish
000890763 082__ $$a620
000890763 1001_ $$0P:(DE-Juel1)177996$$aXu, Qi$$b0
000890763 245__ $$aInsights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3
000890763 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000890763 3367_ $$2DRIVER$$aarticle
000890763 3367_ $$2DataCite$$aOutput Types/Journal article
000890763 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618314235_3239
000890763 3367_ $$2BibTeX$$aARTICLE
000890763 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890763 3367_ $$00$$2EndNote$$aJournal Article
000890763 520__ $$aLi1.3Al0.3Ti1.7(PO4)3 (LATP) is a promising candidate as solid electrolyte and Li+ conductive component in the composite electrodes of all-solid-state Li-ion batteries. For both applications, reducing the sintering temperature of LATP while preserving its electrochemical properties is highly desired. This work is dedicated to reducing the sintering temperature of LATP from conventionally around 1000 °C to a low temperature of 775 °C with adding an extra 10 wt % of Li2CO3 to the precursors by a reactive sintering process. Comparative investigations with the stoichiometric LATP prepared by the same sintering method indicate that the combination effect of reactive sintering and Li2CO3-excess promotes the liquid phase sintering within LATP yielding a high relative density of 95.3%, whereas the stoichiometric LATP can only achieve a comparable relative density at 875 °C. Furthermore, the reactive sintering assisted Li2CO3-excess LATP exhibits a significantly higher ionic conductivity of 0.65 mS cm−1 at 25 °C and lower total activation energy of 0.334 eV compared with that of the stoichiometric LATP. Correlative studies on the microstructure and the separated specific grain/grain boundary conductivities for the two samples reveal that the improvement of Li+ conductivity for Li-excess LATP is attributed to its smaller total grain boundary thickness.
000890763 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890763 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000890763 588__ $$aDataset connected to CrossRef
000890763 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1
000890763 7001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b2
000890763 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b3
000890763 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4
000890763 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
000890763 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b6
000890763 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b7$$eCorresponding author
000890763 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8
000890763 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2021.229631$$gVol. 492, p. 229631 -$$p229631 -$$tJournal of power sources$$v492$$x0378-7753$$y2021
000890763 8564_ $$uhttps://juser.fz-juelich.de/record/890763/files/LATP_Manuscript_JPS_F_clean.pdf$$yPublished on 2021-02-18. Available in OpenAccess from 2023-02-18.
000890763 909CO $$ooai:juser.fz-juelich.de:890763$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177996$$aForschungszentrum Jülich$$b0$$kFZJ
000890763 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177996$$aRWTH Aachen$$b0$$kRWTH
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176812$$aForschungszentrum Jülich$$b2$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b3$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b6$$kFZJ
000890763 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b6$$kRWTH
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b7$$kFZJ
000890763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000890763 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
000890763 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156123$$a IEK-12$$b8
000890763 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890763 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000890763 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890763 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000890763 9141_ $$y2021
000890763 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000890763 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890763 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890763 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2018$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2018$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890763 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890763 920__ $$lyes
000890763 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000890763 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000890763 9801_ $$aFullTexts
000890763 980__ $$ajournal
000890763 980__ $$aVDB
000890763 980__ $$aUNRESTRICTED
000890763 980__ $$aI:(DE-Juel1)IEK-9-20110218
000890763 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000890763 981__ $$aI:(DE-Juel1)IET-1-20110218